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Theorem (2011 Hocquard, Valicov)
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If Mad(G) < %2, then .

If Mad(G) < =5, then x.

If Mad(G) < ﬂ then .
(

If Mad(G) < 252, then .
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Theorem (2016+ C., Kim, Kostochka, Raspaud)

If Mad(G) < § and A(G) > 9, then \.(G) < 3A(G) — 3.

If Mad(G) < 3 and A(G) > 7, then .(G) < 3A(G).

Ky with pendent edges shows sharpness!

A(G) > 9: If G is planar and girth> 8 = yL(G) < 3A(G) — 3

A(G) > 7: If G is planar and girth> 6 = \.(G) < 3A(G

~
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Theorem (2016+ C., Kim, Kostochka, Raspaud)
If G is 2-degenerate, then x.(G) < 5A(G) + 1.

There is a 2-degenerate planar graph with y.(G) = 4A(G) — 4!
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1.25A(G)? A(G) is even

F h G, x.(G) <
or a graph &, x;(C) < {1.25A(G)2 _0.5A(G) +0.25 A(G) is odd

Better Asymptotic and Exact results!

Conjecture (1990 Faudree, Gyarfas, Schelp, Tuza)

For a graph G with A(G) < 3,
(5): X4(G) < 7 if G is bipartite and girth at least 6
(6): x.(G) <5 if G is bipartite and large girth

Theorem (2015 Yu)
If G is k-degenerate, then \.(G) < (4k — 2)A(G) — k(2k — 1) + 1.

For a 2-degenerate graph G, 4A(G) — 4 < maxg x.(G) < 5A(G) + 1.
For a planar graph G, 4A(G) — 4 < maxg xL(G) < 4A(G) + 4.
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Thank you for your attention!
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