Strong edge-colorings of sparse graphs with large maximum degree

ILKYOO CHOI

KAIST, Korea

Joint work with

Jaehoon Kim

Alexandr Kostochka

André Raspaud

A proper (vertex) coloring: partition V(G) into independent sets

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings

- Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings - Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings

- Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings - Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1976 Vizing)

For a graph G, $\chi'(G) \leq \Delta(G) + 1$.

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings - Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1976 Vizing)

For a graph G, $\chi'(G) \leq \Delta(G) + 1$.

A strong edge-coloring: partition E(G) into induced matchings

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings - Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1976 Vizing)

For a graph G, $\chi'(G) \leq \Delta(G) + 1$.

A strong edge-coloring: partition E(G) into induced matchings - Greedy bound: $\chi'_s(G) \leq 2\Delta(G)(\Delta(G) - 1) + 1$

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings - Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1976 Vizing)

For a graph G, $\chi'(G) \leq \Delta(G) + 1$.

A strong edge-coloring: partition E(G) into induced matchings - Greedy bound: $\chi'_s(G) \le 2\Delta(G)(\Delta(G) - 1) + 1$

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings - Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1976 Vizing)

For a graph G, $\chi'(G) \leq \Delta(G) + 1$.

A strong edge-coloring: partition E(G) into induced matchings - Greedy bound: $\chi'_s(G) \leq 2\Delta(G)(\Delta(G) - 1) + 1$

Theorem (1941 Brooks)

If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

A proper edge-coloring: partition E(G) into matchings - Greedy bound: $\chi'(G) \leq 2(\Delta(G) - 1) + 1$

Theorem (1976 Vizing)

For a graph G, $\chi'(G) \leq \Delta(G) + 1$.

A strong edge-coloring: partition E(G) into induced matchings - Greedy bound: $\chi'_s(G) \leq 2\Delta(G)(\Delta(G) - 1) + 1$

Conjecture (1989 Erdős, Nešetřil)

For a graph G, $\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$

Conjecture (1989 Erdős, Nešetřil)				
For a graph G, $\chi_{s}'(G) \leq \langle$	$(1.25\Delta(G)^2)$ $(1.25\Delta(G)^2 - 0.5\Delta(G) + 0.25)$	$\Delta(G)$ is even $\Delta(G)$ is odd		

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Conjecture (1989 Erdős, Nešetřil)
For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle. Exact results:

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter)

If $\Delta(G) = 3$, then $\chi'_s(G) \leq 10$.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter)

If $\Delta(G) = 3$, then $\chi'_s(G) \leq 10$.

Conjecture is true for $\Delta(G) = 3!$

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter, 2006 Cranston)

If $\Delta(G) = 3$, then $\chi'_s(G) \le 10$. If $\Delta(G) = 4$, then $\chi'_s(G) \le 22$. Conjecture is true for $\Delta(G) = 3!$

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter, 2006 Cranston)

If $\Delta(G) = 3$, then $\chi'_s(G) \le 10$. If $\Delta(G) = 4$, then $\chi'_s(G) \le 22$. Conjecture is true for $\Delta(G) = 3!$ Conjecture is 20 for $\Delta(G) = 4$.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter, 2006 Cranston)

If $\Delta(G) = 3$, then $\chi'_s(G) \le 10$. If $\Delta(G) = 4$, then $\chi'_s(G) \le 22$. Conjecture is true for $\Delta(G) = 3!$ Conjecture is 20 for $\Delta(G) = 4$.

Asymptotic results:

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter, 2006 Cranston)

If $\Delta(G) = 3$,	then	$\chi'_{s}(G)$	\leq 10.
If $\Delta(G) = 4$,	then	$\chi'_{s}(G)$	\leq 22.

Conjecture is true for $\Delta(G) = 3!$ Conjecture is 20 for $\Delta(G) = 4$.

Asymptotic results:

Theorem (1997 Molloy, Reed)

If $\Delta(G)$ is sufficiently large, then $\chi'_s(G) \leq 1.998 \Delta(G)^2$.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter, 2006 Cranston)

If $\Delta(G) = 3$, then $\chi'_s(G) \le 10$. If $\Delta(G) = 4$, then $\chi'_s(G) \le 22$. Conjecture is true for $\Delta(G) = 3!$ Conjecture is 20 for $\Delta(G) = 4$.

Asymptotic results:

Theorem (1997 Molloy, Reed, 2015+ Bruhn, Joos)

If $\Delta(G)$ is sufficiently large, then $\chi'_{s}(G) \leq 1.998\Delta(G)^{2}$. If $\Delta(G)$ is sufficiently large, then $\chi'_{s}(G) \leq 1.93\Delta(G)^{2}$.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

If true, then sharp: blowup of a 5-cycle.

Exact results:

Theorem (1992 Anderson, 1993 Horák, Qing, Trotter, 2006 Cranston)

If $\Delta(G) = 3$, then $\chi'_s(G) \le 10$. If $\Delta(G) = 4$, then $\chi'_s(G) \le 22$. Conjecture is true for $\Delta(G) = 3!$ Conjecture is 20 for $\Delta(G) = 4$.

Asymptotic results:

Theorem (1997 Molloy, Reed, 2015+ Bruhn, Joos)

If $\Delta(G)$ is sufficiently large, then $\chi'_{s}(G) \leq 1.998\Delta(G)^{2}$. If $\Delta(G)$ is sufficiently large, then $\chi'_{s}(G) \leq 1.93\Delta(G)^{2}$.

Investigated on many other graph classes......

For a graph G with $\Delta(G) \leq 3$, (1): $\chi'_s(G) \leq 10$ (2): $\chi'_s(G) \leq 9$ if G is bipartite (3): $\chi'_s(G) \leq 9$ if G is planar (4): $\chi'_s(G) \leq 6$ if G is bipartite and $d(x) + d(y) \leq 5$ for each edge xy. (5): $\chi'_s(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_s(G) \leq 5$ if G is bipartite and large girth

For a graph G with $\Delta(G) \leq 3$, (1): $\chi'_s(G) \leq 10$ (2): $\chi'_s(G) \leq 9$ if G is bipartite (3): $\chi'_s(G) \leq 9$ if G is planar (4): $\chi'_s(G) \leq 6$ if G is bipartite and $d(x) + d(y) \leq 5$ for each edge xy. (5): $\chi'_s(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_s(G) \leq 5$ if G is bipartite and large girth

(1): 1992 Anderson, 1993 Horák, Qing, Trotter(2): 1993 Steger, Yu

For a graph G with $\Delta(G) \leq 3$, (1): $\chi'_s(G) \leq 10$ (2): $\chi'_s(G) \leq 9$ if G is bipartite (3): $\chi'_s(G) \leq 9$ if G is planar (4): $\chi'_s(G) \leq 6$ if G is bipartite and $d(x) + d(y) \leq 5$ for each edge xy. (5): $\chi'_s(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_s(G) \leq 5$ if G is bipartite and large girth

- (1): 1992 Anderson, 1993 Horák, Qing, Trotter
- (2): 1993 Steger, Yu
- (3): 2016 Kostochka, Li, Ruksasakchai, Santana, Wang, Yu
- (4): 2008 Wu, Lin

For a graph G with $\Delta(G) \leq 3$, (1): $\chi'_s(G) \leq 10$ (2): $\chi'_s(G) \leq 9$ if G is bipartite (3): $\chi'_s(G) \leq 9$ if G is planar (4): $\chi'_s(G) \leq 6$ if G is bipartite and $d(x) + d(y) \leq 5$ for each edge xy. (5): $\chi'_s(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_s(G) \leq 5$ if G is bipartite and large girth

- (1): 1992 Anderson, 1993 Horák, Qing, Trotter
- (2): 1993 Steger, Yu
- (3): 2016 Kostochka, Li, Ruksasakchai, Santana, Wang, Yu
- (4): 2008 Wu, Lin
- (5): OPEN!
- (6): **OPEN**!

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of G. Note that $\chi'(G) \leq \Delta(G) + 1$.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of G. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of G. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of *G*. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar. Use the Four Color Theorem!!

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of *G*. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar. Use the Four Color Theorem!!

Example: Glue $K_{2,\Delta-2}$ and $K_{2,\Delta}$ in a smart way.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of *G*. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar. Use the Four Color Theorem!!

Example: Glue $K_{2,\Delta-2}$ and $K_{2,\Delta}$ in a smart way.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of *G*. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar. Use the Four Color Theorem!!

Example: Glue $K_{2,\Delta-2}$ and $K_{2,\Delta}$ in a smart way.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of *G*. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar. Use the Four Color Theorem!!

Example: Glue $K_{2,\Delta-2}$ and $K_{2,\Delta}$ in a smart way.

Theorem (2013 Borodin, Ivanova)

If G is planar with $\Delta(G) \ge 3$ and girth $\ge 40\lfloor \frac{\Delta(G)}{2} \rfloor + 1$ then $\chi'_s(G) \le 2\Delta(G) - 1$.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of *G*. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar. Use the Four Color Theorem!!

Example: Glue $K_{2,\Delta-2}$ and $K_{2,\Delta}$ in a smart way.

Theorem (2013 Borodin, Ivanova)

If G is planar with $\Delta(G) \ge 3$ and girth $\ge 40\lfloor \frac{\Delta(G)}{2} \rfloor + 1$ then $\chi'_s(G) \le 2\Delta(G) - 1$.

Theorem (2014 Chang, Montassier, Pêcher, Raspaud)

If G is planar with $\Delta(G) \ge 4$ and girth $\ge 10\Delta(G) + 46$ then $\chi'_s(G) \le 2\Delta(G) - 1$.

If G is planar, then $\chi'_s(G) \le 4\Delta(G) + 4$. There exists a planar graph G with $\chi'_s(G) = 4\Delta(G) - 4$.

proof: Fix an edge-coloring of *G*. Note that $\chi'(G) \leq \Delta(G) + 1$. We will show: each color class can be strongly edge-colored with 4 colors. Fix one color class and contract each edge; the resulting graph is planar. Use the Four Color Theorem!!

Example: Glue $K_{2,\Delta-2}$ and $K_{2,\Delta}$ in a smart way.

Theorem (2013 Borodin, Ivanova)

If G is planar with $\Delta(G) \ge 3$ and girth $\ge 40\lfloor \frac{\Delta(G)}{2} \rfloor + 1$ then $\chi'_{s}(G) \le 2\Delta(G) - 1$.

Theorem (2014 Chang, Montassier, Pêcher, Raspaud)

If G is planar with $\Delta(G) \ge 4$ and girth $\ge 10\Delta(G) + 46$ then $\chi'_{s}(G) \le 2\Delta(G) - 1$.

 $Mad(G) = \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$ If G is planar with girth g, then $Mad(G) < \frac{2g}{g-2}.$

Theorem (2011 Hocquard, Valicov)

Assume
$$\Delta(G) \leq 3$$
.
If $Mad(G) < \frac{15}{7}$, then $\chi'_s(G) \leq 6$
If $Mad(G) < \frac{27}{13}$, then $\chi'_s(G) \leq 7$
If $Mad(G) < \frac{13}{5}$, then $\chi'_s(G) \leq 8$
If $Mad(G) < \frac{36}{13}$, then $\chi'_s(G) \leq 9$

Assume
$$\Delta(G) \leq 3$$
.
If $Mad(G) < \chi \xrightarrow{7}{3}$, then $\chi'_{s}(G) \leq 6$
If $Mad(G) < \chi \xrightarrow{5}{2}$, then $\chi'_{s}(G) \leq 7$
If $Mad(G) < \chi \xrightarrow{8}{3}$, then $\chi'_{s}(G) \leq 8$
If $Mad(G) < \chi \xrightarrow{8}{3}$, then $\chi'_{s}(G) \leq 9$

 $\begin{array}{l} \mbox{Assume } \Delta(G) \leq 3. \\ \mbox{If } Mad(G) < \underbrace{\forall}_{i} \frac{7}{3}, \mbox{ then } \chi_{s}'(G) \leq 6: \mbox{ planar and girth} \geq 14 \Rightarrow \chi_{s}'(G) \leq 6 \\ \mbox{If } Mad(G) < \underbrace{\forall}_{i} \frac{5}{2}, \mbox{ then } \chi_{s}'(G) \leq 7: \mbox{ planar and girth} \geq 10 \Rightarrow \chi_{s}'(G) \leq 7 \\ \mbox{If } Mad(G) < \underbrace{\forall}_{i} \frac{8}{3}, \mbox{ then } \chi_{s}'(G) \leq 8: \mbox{ planar and girth} \geq 8 \Rightarrow \chi_{s}'(G) \leq 8 \\ \mbox{If } Mad(G) < \underbrace{\forall}_{i} \frac{20}{7}, \mbox{ then } \chi_{s}'(G) \leq 9: \mbox{ planar and girth} \geq 7 \Rightarrow \chi_{s}'(G) \leq 9 \\ \end{array}$

Theorem (2014 HLSŠ, 2014 BHHV, 2016+ RW)

If G is planar and $\Delta(G) \ge 4$ and girth ≥ 6 , then $\chi'_s(G) \le 3\Delta + \not \in 1$. If G is planar and $\Delta(G) \ge 4$ and girth ≥ 7 , then $\chi'_s(G) \le 3\Delta$.

Assume $\Delta(G) \leq 3$. If $Mad(G) < \overset{VS}{\longrightarrow} \frac{7}{3}$, then $\chi'_{s}(G) \leq 6$: planar and girth $\geq 14 \Rightarrow \chi'_{s}(G) \leq 6$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{5}{2}$, then $\chi'_{s}(G) \leq 7$: planar and girth $\geq 10 \Rightarrow \chi'_{s}(G) \leq 7$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{8}{3}$, then $\chi'_{s}(G) \leq 8$: planar and girth $\geq 8 \Rightarrow \chi'_{s}(G) \leq 8$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{8}{7}$, then $\chi'_{s}(G) \leq 9$: planar and girth $\geq 7 \Rightarrow \chi'_{s}(G) \leq 9$

Theorem (2014 HLSŠ, 2014 BHHV, 2016+ RW)

If G is planar and $\Delta(G) \ge 4$ and girth ≥ 6 , then $\chi'_s(G) \le 3\Delta + \not \in 1$. If G is planar and $\Delta(G) \ge 4$ and girth ≥ 7 , then $\chi'_s(G) \le 3\Delta$.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If $Mad(G) < \frac{8}{3}$ and $\Delta(G) \ge 9$, then $\chi'_s(G) \le 3\Delta(G) - 3$. If Mad(G) < 3 and $\Delta(G) \ge 7$, then $\chi'_s(G) \le 3\Delta(G)$.

Assume $\Delta(G) \leq 3$. If $Mad(G) < \overset{VS}{\longrightarrow} \frac{7}{3}$, then $\chi'_{s}(G) \leq 6$: planar and girth $\geq 14 \Rightarrow \chi'_{s}(G) \leq 6$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{5}{2}$, then $\chi'_{s}(G) \leq 7$: planar and girth $\geq 10 \Rightarrow \chi'_{s}(G) \leq 7$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{8}{3}$, then $\chi'_{s}(G) \leq 8$: planar and girth $\geq 8 \Rightarrow \chi'_{s}(G) \leq 8$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{8}{7}$, then $\chi'_{s}(G) \leq 9$: planar and girth $\geq 7 \Rightarrow \chi'_{s}(G) \leq 9$

Theorem (2014 HLSŠ, 2014 BHHV, 2016+ RW)

If G is planar and $\Delta(G) \ge 4$ and girth ≥ 6 , then $\chi'_s(G) \le 3\Delta + \not \in 1$. If G is planar and $\Delta(G) \ge 4$ and girth ≥ 7 , then $\chi'_s(G) \le 3\Delta$.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If $Mad(G) < \frac{8}{3}$ and $\Delta(G) \ge 9$, then $\chi'_{s}(G) \le 3\Delta(G) - 3$. If Mad(G) < 3 and $\Delta(G) \ge 7$, then $\chi'_{s}(G) \le 3\Delta(G)$.

 K_4 with pendent edges shows sharpness!

Assume $\Delta(G) \leq 3$. If $Mad(G) < \overset{VS}{\longrightarrow} \frac{7}{3}$, then $\chi'_{s}(G) \leq 6$: planar and girth $\geq 14 \Rightarrow \chi'_{s}(G) \leq 6$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{5}{2}$, then $\chi'_{s}(G) \leq 7$: planar and girth $\geq 10 \Rightarrow \chi'_{s}(G) \leq 7$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{8}{3}$, then $\chi'_{s}(G) \leq 8$: planar and girth $\geq 8 \Rightarrow \chi'_{s}(G) \leq 8$ If $Mad(G) < \overset{VS}{\longrightarrow} \frac{8}{7}$, then $\chi'_{s}(G) \leq 9$: planar and girth $\geq 7 \Rightarrow \chi'_{s}(G) \leq 9$

Theorem (2014 HLSŠ, 2014 BHHV, 2016+ RW)

If G is planar and $\Delta(G) \ge 4$ and girth ≥ 6 , then $\chi'_{s}(G) \le 3\Delta + \not \otimes 1$. If G is planar and $\Delta(G) \ge 4$ and girth ≥ 7 , then $\chi'_{s}(G) \le 3\Delta$.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If $Mad(G) < \frac{8}{3}$ and $\Delta(G) \ge 9$, then $\chi'_{s}(G) \le 3\Delta(G) - 3$. If Mad(G) < 3 and $\Delta(G) \ge 7$, then $\chi'_{s}(G) \le 3\Delta(G)$.

 K_4 with pendent edges shows sharpness!

 $\Delta(G) \ge 9$: If G is planar and girth $\ge 8 \Rightarrow \chi'_s(G) \le 3\Delta(G) - 3$ $\Delta(G) \ge 7$: If G is planar and girth $\ge 6 \Rightarrow \chi'_s(G) \le 3\Delta(G)$

Conjecture (13 Change, Narayanan)

If G is k-degenerate, then $\chi'_s(G) \leq ck^2 \Delta(G)^2$ for some constant c.

Conjecture (13 Change, Narayanan)

If G is k-degenerate, then $\chi'_s(G) \leq ck^2 \Delta(G)^2$ for some constant c.

Theorem (2015 Yu)

If G is k-degenerate, then $\chi'_s(G) \leq (4k-2)\Delta(G) - k(2k-1) + 1$.

Conjecture (13 Change, Narayanan)

If G is k-degenerate, then $\chi'_s(G) \leq ck^2 \Delta(G)^2$ for some constant c.

Theorem (2015 Yu)

If G is k-degenerate, then $\chi'_{s}(G) \leq (4k-2)\Delta(G) - k(2k-1) + 1$.

Theorem (13 Chang, Narayanan, 16+ Luo, Yu, 15 Yu, 14 Wang)

If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 10\Delta(G) - 10$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 8\Delta(G) - 4$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 6\Delta(G) - 5$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 6\Delta(G) - 7$.

Conjecture (13 Change, Narayanan)

If G is k-degenerate, then $\chi'_s(G) \leq ck^2 \Delta(G)^2$ for some constant c.

Theorem (2015 Yu)

If G is k-degenerate, then $\chi'_{s}(G) \leq (4k-2)\Delta(G) - k(2k-1) + 1$.

Theorem (13 Chang, Narayanan, 16+ Luo, Yu, 15 Yu, 14 Wang)

If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 10\Delta(G) - 10$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 8\Delta(G) - 4$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 6\Delta(G) - 5$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 6\Delta(G) - 7$.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If G is 2-degenerate, then $\chi'_{s}(G) \leq 5\Delta(G) + 1$.

Conjecture (13 Change, Narayanan)

If G is k-degenerate, then $\chi'_s(G) \leq ck^2 \Delta(G)^2$ for some constant c.

Theorem (2015 Yu)

If G is k-degenerate, then $\chi'_{s}(G) \leq (4k-2)\Delta(G) - k(2k-1) + 1$.

Theorem (13 Chang, Narayanan, 16+ Luo, Yu, 15 Yu, 14 Wang)

If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 10\Delta(G) - 10$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 8\Delta(G) - 4$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 6\Delta(G) - 5$. If G is 2-degenerate and $\Delta(G) \ge 2$, then $\chi'_s(G) \le 6\Delta(G) - 7$.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If G is 2-degenerate, then $\chi'_{s}(G) \leq 5\Delta(G) + 1$.

There is a 2-degenerate planar graph with $\chi'_{s}(G) = 4\Delta(G) - 4!$

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

Better Asymptotic and Exact results!

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

Better Asymptotic and Exact results!

Conjecture (1990 Faudree, Gyárfás, Schelp, Tuza)

For a graph G with $\Delta(G) \leq 3$, (5): $\chi'_s(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_s(G) \leq 5$ if G is bipartite and large girth

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

Better Asymptotic and Exact results!

Conjecture (1990 Faudree, Gyárfás, Schelp, Tuza)

For a graph G with $\Delta(G) \leq 3$, (5): $\chi'_s(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_s(G) \leq 5$ if G is bipartite and large girth

Theorem (2015 Yu)

If G is k-degenerate, then $\chi'_s(G) \leq (4k-2)\Delta(G) - k(2k-1) + 1$.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

Better Asymptotic and Exact results!

Conjecture (1990 Faudree, Gyárfás, Schelp, Tuza)

For a graph G with $\Delta(G) \leq 3$, (5): $\chi'_s(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_s(G) \leq 5$ if G is bipartite and large girth

Theorem (2015 Yu)

If G is k-degenerate, then $\chi'_s(G) \leq (4k-2)\Delta(G) - k(2k-1) + 1$.

For a 2-degenerate graph G, $4\Delta(G) - 4 \le \max_G \chi'_s(G) \le 5\Delta(G) + 1$.

Conjecture (1989 Erdős, Nešetřil)

For a graph G,
$$\chi'_{s}(G) \leq \begin{cases} 1.25\Delta(G)^{2} & \Delta(G) \text{ is even} \\ 1.25\Delta(G)^{2} - 0.5\Delta(G) + 0.25 & \Delta(G) \text{ is odd} \end{cases}$$

Better Asymptotic and Exact results!

Conjecture (1990 Faudree, Gyárfás, Schelp, Tuza)

For a graph G with $\Delta(G) < 3$. (5): $\chi'_{s}(G) \leq 7$ if G is bipartite and girth at least 6 (6): $\chi'_{s}(G) \leq 5$ if G is bipartite and large girth

Theorem (2015 Yu)

If G is k-degenerate, then $\chi'_{\epsilon}(G) \leq (4k-2)\Delta(G) - k(2k-1) + 1$.

For a planar graph G,

For a 2-degenerate graph G, $4\Delta(G) - 4 \leq \max_G \chi'_{s}(G) \leq 5\Delta(G) + 1$. $4\Delta(G) - 4 \leq \max_G \chi'_{s}(G) \leq 4\Delta(G) + 4.$

Thank you for your attention!

