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Conjecture (1990 Faudree, Gyárfás, Schelp, Tuza)

For a graph G with ∆(G ) ≤ 3,
(1): χ′s(G ) ≤ 10
(2): χ′s(G ) ≤ 9 if G is bipartite
(3): χ′s(G ) ≤ 9 if G is planar
(4): χ′s(G ) ≤ 6 if G is bipartite and d(x) + d(y) ≤ 5 for each edge xy.
(5): χ′s(G ) ≤ 7 if G is bipartite and girth at least 6
(6): χ′s(G ) ≤ 5 if G is bipartite and large girth

(1): 1992 Anderson, 1993 Horák, Qing, Trotter
(2): 1993 Steger, Yu
(3): 2016 Kostochka, Li, Ruksasakchai, Santana, Wang, Yu
(4): 2008 Wu, Lin
(5): OPEN!
(6): OPEN!
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Theorem (1990 Faudree, Gyárfás, Schelp, Tuza)

If G is planar, then χ′s(G ) ≤ 4∆(G ) + 4.
There exists a planar graph G with χ′s(G ) = 4∆(G )− 4.

proof: Fix an edge-coloring of G . Note that χ′(G ) ≤ ∆(G ) + 1.
We will show: each color class can be strongly edge-colored with 4 colors.
Fix one color class and contract each edge; the resulting graph is planar.
Use the Four Color Theorem!!

Example: Glue K2,∆−2 and K2,∆ in a smart way.

Theorem (2013 Borodin, Ivanova)

If G is planar with ∆(G ) ≥ 3 and girth ≥ 40b∆(G)
2 c+ 1

then χ′s(G ) ≤ 2∆(G )− 1.

Theorem (2014 Chang, Montassier, Pêcher, Raspaud)

If G is planar with ∆(G ) ≥ 4 and girth ≥ 10∆(G ) + 46
then χ′s(G ) ≤ 2∆(G )− 1.

Mad(G )= max
H⊆G

2|E (H)|
|V (H)| . If G is planar with girth g , then Mad(G )< 2g

g−2 .
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If G is planar, then χ′s(G ) ≤ 4∆(G ) + 4.
There exists a planar graph G with χ′s(G ) = 4∆(G )− 4.

proof: Fix an edge-coloring of G . Note that χ′(G ) ≤ ∆(G ) + 1.
We will show: each color class can be strongly edge-colored with 4 colors.
Fix one color class and contract each edge; the resulting graph is planar.
Use the Four Color Theorem!!

Example: Glue K2,∆−2 and K2,∆ in a smart way.

Theorem (2013 Borodin, Ivanova)

If G is planar with ∆(G ) ≥ 3 and girth ≥ 40b∆(G)
2 c+ 1

then χ′s(G ) ≤ 2∆(G )− 1.

Theorem (2014 Chang, Montassier, Pêcher, Raspaud)
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Strong edge-colorings of sparse graphs with large maximum degree

Theorem (2011 Hocquard, Valicov)

Assume ∆(G ) ≤ 3.
If Mad(G ) < 15

7 , then χ′s(G ) ≤ 6
If Mad(G ) < 27

11 , then χ′s(G ) ≤ 7
If Mad(G ) < 13

5 , then χ′s(G ) ≤ 8
If Mad(G ) < 36

13 , then χ′s(G ) ≤ 9

Theorem (2014 HLSŠ, 2014 BHHV, 2016+ RW)

If G is planar and ∆(G ) ≥ 4 and girth ≥ 6, then χ′s(G ) ≤ 3∆ + �A6 1.
If G is planar and ∆(G ) ≥ 4 and girth ≥ 7, then χ′s(G ) ≤ 3∆.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If Mad(G ) < 8
3 and ∆(G ) ≥ 9, then χ′s(G ) ≤ 3∆(G )− 3.

If Mad(G ) < 3 and ∆(G ) ≥ 7, then χ′s(G ) ≤ 3∆(G ).

K4 with pendent edges shows sharpness!

∆(G ) ≥ 9: If G is planar and girth≥ 8⇒ χ′s(G ) ≤ 3∆(G )− 3
∆(G ) ≥ 7: If G is planar and girth≥ 6⇒ χ′s(G ) ≤ 3∆(G )
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Strong edge-colorings of sparse graphs with large maximum degree

A graph is k-degenerate if every subgraph has a vertex of degree ≤k.

Conjecture (13 Change, Narayanan)

If G is k-degenerate, then χ′s(G ) ≤ ck2∆(G )2 for some constant c.

Theorem (2015 Yu)

If G is k-degenerate, then χ′s(G ) ≤ (4k − 2)∆(G )− k(2k − 1) + 1.

Theorem (13 Chang, Narayanan, 16+ Luo, Yu, 15 Yu, 14 Wang)

If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 10∆(G )− 10.
If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 8∆(G )− 4.
If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 6∆(G )− 5.
If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 6∆(G )− 7.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If G is 2-degenerate, then χ′s(G ) ≤ 5∆(G ) + 1.

There is a 2-degenerate planar graph with χ′s(G ) = 4∆(G )− 4!
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If G is k-degenerate, then χ′s(G ) ≤ ck2∆(G )2 for some constant c.

Theorem (2015 Yu)

If G is k-degenerate, then χ′s(G ) ≤ (4k − 2)∆(G )− k(2k − 1) + 1.

Theorem (13 Chang, Narayanan, 16+ Luo, Yu, 15 Yu, 14 Wang)

If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 10∆(G )− 10.
If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 8∆(G )− 4.
If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 6∆(G )− 5.
If G is 2-degenerate and ∆(G ) ≥ 2, then χ′s(G ) ≤ 6∆(G )− 7.

Theorem (2016+ C., Kim, Kostochka, Raspaud)

If G is 2-degenerate, then χ′s(G ) ≤ 5∆(G ) + 1.

There is a 2-degenerate planar graph with χ′s(G ) = 4∆(G )− 4!



Strong edge-colorings of sparse graphs with large maximum degree

OPEN QUESTIONS:

Conjecture (1989 Erdős, Nešeťril)

For a graph G, χ′s(G ) ≤
{

1.25∆(G )2 ∆(G ) is even

1.25∆(G )2 − 0.5∆(G ) + 0.25 ∆(G ) is odd

Better Asymptotic and Exact results!

Conjecture (1990 Faudree, Gyárfás, Schelp, Tuza)

For a graph G with ∆(G ) ≤ 3,
(5): χ′s(G ) ≤ 7 if G is bipartite and girth at least 6
(6): χ′s(G ) ≤ 5 if G is bipartite and large girth

Theorem (2015 Yu)

If G is k-degenerate, then χ′s(G ) ≤ (4k − 2)∆(G )− k(2k − 1) + 1.

For a 2-degenerate graph G , 4∆(G )− 4 ≤ maxG χ
′
s(G ) ≤ 5∆(G ) + 1.

For a planar graph G , 4∆(G )− 4 ≤ maxG χ
′
s(G ) ≤ 4∆(G ) + 4.
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For a graph G with ∆(G ) ≤ 3,
(5): χ′s(G ) ≤ 7 if G is bipartite and girth at least 6
(6): χ′s(G ) ≤ 5 if G is bipartite and large girth

Theorem (2015 Yu)

If G is k-degenerate, then χ′s(G ) ≤ (4k − 2)∆(G )− k(2k − 1) + 1.

For a 2-degenerate graph G , 4∆(G )− 4 ≤ maxG χ
′
s(G ) ≤ 5∆(G ) + 1.

For a planar graph G , 4∆(G )− 4 ≤ maxG χ
′
s(G ) ≤ 4∆(G ) + 4.



Strong edge-colorings of sparse graphs with large maximum degree

OPEN QUESTIONS:

Conjecture (1989 Erdős, Nešeťril)
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Thank you for your attention!


