Improper Coloring Graphs on Surfaces

ILKYOO CHOI

KAIST, Korea

Based on results and discussions with... A. Raspaud H. Choi, J. Jeong, and G. Suh L. Esperet F. Dross, M. Montassier, P. Ochem

March 9, 2016

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

OR

- partition the vertex set of G into k parts
- each part has maximum degree at most 0

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

OR

- partition the vertex set of G into k parts
- each part has maximum degree at most 0

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

OR

- partition the vertex set of G into k parts
- each part has maximum degree at most 0

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

OR

- partition the vertex set of G into k parts
- each part has maximum degree at most 0

A graph G is (d_1, \ldots, d_k) -colorable if the following is possible:

- partition the vertex set of G into k parts
- *i*th part has maximum degree at most d_i for $i \in \{1, \ldots, k\}$

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

OR

- partition the vertex set of G into k parts
- each part has maximum degree at most 0

A graph G is (d_1, \ldots, d_k) -colorable if the following is possible:

- partition the vertex set of G into k parts
- *i*th part has maximum degree at most d_i for $i \in \{1, \ldots, k\}$

An orientable surface: add ≥ 0 handles to the sphere A non-orientable surface: add ≥ 1 cross-caps to the sphere

An orientable surface: add ≥ 0 handles to the sphere A non-orientable surface: add ≥ 1 cross-caps to the sphere

Classification of Surfaces (Möbius 1870, von Dyck 1888, Rado 1925)

A surface is either orientable or non-orientable.

An orientable surface: add ≥ 0 handles to the sphere A non-orientable surface: add ≥ 1 cross-caps to the sphere

Classification of Surfaces (Möbius 1870, von Dyck 1888, Rado 1925)

A surface is either orientable or non-orientable.

Lemma (von Dyck 1888)

One handle and one cross-cap is equivalent to three cross-caps.

An orientable surface: add ≥ 0 handles to the sphere A non-orientable surface: add ≥ 1 cross-caps to the sphere

Classification of Surfaces (Möbius 1870, von Dyck 1888, Rado 1925)

A surface is either orientable or non-orientable.

Lemma (von Dyck 1888)

One handle and one cross-cap is equivalent to three cross-caps.

Euler genus γ of a surface = the number of cross-caps + 2×handles S_{γ} : a surface of Euler genus γ S_0 : sphere / S_1 : projective plane / S_2 : torus or Klein Bottle... planar graph \Leftrightarrow graph (embeddable) on S_0 (without edges crossings)

Every planar graph is 4-colorable.

Every planar graph is 4-colorable (\Leftrightarrow (0, 0, 0, 0)-colorable).

Every planar graph is 4-colorable (\Leftrightarrow (0, 0, 0, 0)-colorable).

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Theorem (Eaton–Hull 1999, Škrekovski 1999)

Given k and ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Every planar graph is 4-colorable (\Leftrightarrow (0, 0, 0, 0)-colorable).

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Theorem (Eaton–Hull 1999, Škrekovski 1999)

Given k and ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Every planar graph is 4-colorable (\Leftrightarrow (0, 0, 0, 0)-colorable).

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Theorem (Eaton–Hull 1999, Škrekovski 1999)

Given k and ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

 $\{x, y\}$ cannot be colored $\{k, \ell\}$

z cannot be neither *k* nor ℓ

Every planar graph is 4-colorable (\Leftrightarrow (0, 0, 0, 0)-colorable).

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Theorem (Eaton–Hull 1999, Škrekovski 1999)

Given k and ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Improper coloring planar graphs with at least three parts: SOLVED!

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph!

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph!

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph!

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph! What if we consider sparser graphs?

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph!

What if we consider sparser graphs? Girth condition!

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph!

What if we consider sparser graphs? Girth condition!

Problem (1)

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

Problem (2)

Given $(g; d_1)$, determine the minimum $d_2 = d_2(g; d_1)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph!

What if we consider sparser graphs? Girth condition!

Problem (1)

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

Problem (2)

Given $(g; d_1)$, determine the minimum $d_2 = d_2(g; d_1)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$$Mad(G) = \max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}.$$
 If G is planar with girth g, then $Mad(G) < \frac{2g}{g-2}.$

Problem (3)

Given (d_1, d_2) , determine the supremum x such that every graph with $Mad(G) \le x$ is (d_1, d_2) -colorable.

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15 Given (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph!

What if we consider sparser graphs? Girth condition!

Problem (1)

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

Non- (d_1, d_2) -colorable planar graph with girth 4.

Non-(0, k)-colorable planar graph with girth 6.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4 5
0	×				
1					
2					
3					
4					
5					
6					

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1						
2						
3						
4					5	
5						5
6						

Theorem (Škrekovski 2000)

g(d, d) = 5 for $d \ge 4$

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1						
2						
3						
4					5	
5					5	5
6					5	5

Theorem (Škrekovski 2000)

g(d, d) = 5 for $d \ge 4$

 $g(d_1, d_2) = 5$ for min $\{d_1, d_2\} \ge 4$ since $g(d_1, d_2 + 1) \le g(d_1, d_2)$.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1						
2						
3						
4					5	
5					5	5
6			5	5	5	5

Theorem (Škrekovski 2000, Borodin-Kostochka 2011)

g(d, d) = 5 for $d \ge 4$ and g(2, 6) = 5

 $g(d_1, d_2) = 5$ for min $\{d_1, d_2\} \ge 4$ since $g(d_1, d_2 + 1) \le g(d_1, d_2)$.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1						
2						
3						
4					5	
5					5	5
6			5	5	5	5
Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

	$d_2 \setminus d_1$	0	1	2	3	4	5
-	0	×					
	1						
	2	8					
	3						
	4	7				5	
	5	7				5	5
	6	7		5	5	5	5

Theorem (Montassier–Ochem 2015, Borodin–Kostochka 2011, 2014)

g(0, k) = 7 for $k \ge 4$ g(0, 2) = 8

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1						
2	8					
3						
4	7				5	
5	7				5	5
6	7		5	5	5	5

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11					
2	8					
3						
4	7				5	
5	7				5	5
6	7		5	5	5	5

Effort to determine g(0, 1).....

- $g(0,1) \leq 16$ 2007 Glebov–Zambalaeva
- $g(0,1) \leq 14$ 2009 Borodin–Ivanova
- $g(0,1) \leq 14$ 2011 Borodin–Kostochka
- $g(0,1) \ge 10$ 2013 Esperet–Montassier–Ochem–Pinlou
- $g(0,1) \le 11$ 2014 Kim–Kostochka–Zhu

_

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5 or 6	5	5
6	7	5 or 6	5	5	5	5

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5 or 6	5	5
6	7	5 or 6	5	5	5	5

No value of $g(1, d_2)$ was determined!

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5 or 6	5	5
6	7	5 or 6	5	5	5	5
	1			1		

No value of $g(1, d_2)$ was determined!

Question (Raspaud 2013)

Is a planar graph with girth ≥ 5 indeed (d_1, d_2) -colorable for all $d_1 + d_2 \geq 8$?

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5 or 6	5	5
6	7	5 or 6	5	5	5	5

No value of $g(1, d_2)$ was determined!

Question (Raspaud 2013, Montassier–Ochem 2015)

Is a planar graph with girth ≥ 5 indeed (d_1, d_2) -colorable for all $d_1+d_2\geq 8$? Is there a d_2 such that $g(1, d_2) = 5$?

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5

Theorem (C.–Raspaud 2015)

g(3,5) = 5. Every planar graph with girth ≥ 5 is (3,5)-colorable.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5

Theorem (C.–Raspaud 2015)

g(3,5) = 5. Every planar graph with girth ≥ 5 is (3,5)-colorable.

Theorem (Choi–C.–Jeong–Suh 2016+)

g(1,10) = 5

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5

Theorem (C.–Raspaud 2015)

g(3,5) = 5. Every planar graph with girth ≥ 5 is (3,5)-colorable.

Theorem (Choi–C.–Jeong–Suh 2016+)

g(1,10) = 5. Every planar graph with girth ≥ 5 is (1,10)-colorable.

_

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
:	:	:	:	:	:	:
•		•	•	•	· •	•
10	7	5	5	5	5	5

Theorem (Choi–C.–Jeong–Suh 2016+)

g(1,10) = 5. Every planar graph with girth ≥ 5 is (1,10)-colorable.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
:	:	:	:	:	:	:
10	7	5	5	5	5	5

Theorem (Choi–C.–Jeong–Suh 2016+)

g(1,10) = 5. Every planar graph with girth ≥ 5 is (1,10)-colorable.

Only finitely many values left!

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
:	:	:	:	:	:	:
•	•	•	•	•		•
10	7	5	5	5	5	5

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable.

Given (d_1, d_2) , determine the minimum $g = g(d_1, d_2)$ such that every planar graph with girth $\geq g$ is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
:	:	:	:	:	:	:
10	7	5	5	5	5	5

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable.

Tight!

Theorem (Choi-C.-Jeong-Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Tightness example:

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Tightness example: Goal: construct a non-(1, k)-colorable graph on $S_{O(k)}$

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Tightness example: Goal: construct a non-(1, k)-colorable graph on $S_{O(k)}$

A triple is three vertices that induces at most one edge. Given a triple, let "adding a P_3 " mean the following:

Obtain G_k in the following way:

- Start with C_7 .
- Do the operation of adding a P_3 to each triple 3k + 1 times.

In a (1, k)-coloring of C_7 , there must be a triple T all colored with k. At least one P_3 that was added to T cannot have a vertex of color k.

 G_k has $7 + 5(3k + 1) \cdot {\binom{7}{3}} - 7$ edges, so the Euler genus is linear in k.

Graphs on surfaces!

 S_{γ} : a surface of Euler genus γ planar graph \Leftrightarrow graph (embeddable) on S_0

Graphs on surfaces!

Theorem (Appel–Haken 1977)

Every planar graph is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2, 2, 2)-colorable.

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2,2,2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2, 2, 2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

For each k, ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Conjecture (Cowen-Cowen-Woodall 1986)

Every graph on S_{γ} is (c_3, c_3, c_3) -colorable for some $c_3 = c_3(\gamma)$.

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2, 2, 2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

For each k, ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Conjecture (Cowen-Cowen-Woodall 1986)

Every graph on S_{γ} is (c_3, c_3, c_3) -colorable for some $c_3 = c_3(\gamma)$.

Theorem (Archdeacon 87, Cowen–Cowen–Jesurum 97, Woodall 2011)

Every graph on S_{γ} is (c_3, c_3, c_3) -colorable with $c_3 = \max\{15, \frac{3\gamma-8}{2}\}$. with $c_3 = \max\{12, 6+\sqrt{6\gamma}\}$. with $c_3 = \max\{9, 2+\sqrt{4\gamma+6}\}$. Graphs on surfaces! S_{γ} : a surface of Euler genus γ planar graph \Leftrightarrow graph (embeddable) on S_0

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2, 2, 2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

Graphs on surfaces! S_{γ} : a

 S_{γ} : a surface of Euler genus γ planar graph \Leftrightarrow graph (embeddable) on S_0

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2, 2, 2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

For each k, ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Theorem (Woodall 2011)

Every graph on S_{γ} is (c_3, c_3, c_3) -colorable with $c_3 = \max\{9, 2 + \sqrt{4\gamma + 6}\}$.

Graphs on surfaces! S_{γ} :

 S_{γ} : a surface of Euler genus γ planar graph \Leftrightarrow graph (embeddable) on S_0

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2, 2, 2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

For each k, ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Theorem (Woodall 2011)

Every graph on S_{γ} is (c_3, c_3, c_3) -colorable with $c_3 = \max\{9, 2 + \sqrt{4\gamma + 6}\}$.

Theorem (C.–Esperet 2016++)

For $\gamma > 0$, every graph on S_{γ} is $(0, 0, 0, 9\gamma - 4)$ -colorable. For $\gamma > 0$, every graph on S_{γ} is $(2, 2, 9\gamma - 4)$ -colorable. Graphs on surfaces! S_{γ} : a surface of Euler genus γ planar graph \Leftrightarrow graph (embeddable) on S_0

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2,2,2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

For each k, ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Theorem (Woodall 2011)

Every graph on S_{γ} is (c_3, c_3, c_3) -colorable with $c_3 = \max\{9, 2 + \sqrt{4\gamma + 6}\}$.

Theorem (C.–Esperet 2016++)

For $\gamma > 0$, every graph on S_{γ} is $(0, 0, 0, 9\gamma - 4)$ -colorable. Tight! For $\gamma > 0$, every graph on S_{γ} is $(2, 2, 9\gamma - 4)$ -colorable. Tight! Graphs on surfaces!

 S_{γ} : a surface of Euler genus γ planar graph \Leftrightarrow graph (embeddable) on S_0

Theorem (Appel–Haken 1977)

Every graph on S_0 is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S_0 is (2, 2, 2)-colorable. Every graph on S_γ is (c_4, c_4, c_4, c_4) -colorable with $c_4 = \max\{14, \lceil \frac{4\gamma - 11}{3} \rceil\}$.

For each k, ℓ , there exists a non- $(1, k, \ell)$ -colorable planar graph.

Theorem (Woodall 2011)

Every graph on S_{γ} is (c_3, c_3, c_3) -colorable with $c_3 = \max\{9, 2 + \sqrt{4\gamma + 6}\}$.

Theorem (C.–Esperet 2016++)

For $\gamma > 0$, every graph on S_{γ} is $(0, 0, 0, 9\gamma - 4)$ -colorable. Tight! For $\gamma > 0$, every graph on S_{γ} is $(2, 2, 9\gamma - 4)$ -colorable. Tight!

Improper coloring graphs on surfaces: SOLVED!

graphs on surfaces

Improper coloring sparser graphs on surfaces.....

graphs on surfaces

Improper coloring sparser graphs on surfaces...... girth condition!

Improper coloring sparser graphs on surfaces...... girth condition!

Girth 4:

Improper coloring sparser graphs on surfaces...... girth condition! Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Improper coloring sparser graphs on surfaces...... girth condition!

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Improper coloring sparser graphs on surfaces...... girth condition! Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every planar graph with girth ≥ 4 is (0, 0, 0)-colorable.

Improper coloring sparser graphs on surfaces...... girth condition! Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.
Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable.

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5:

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5:

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5:

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5: There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5: There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 6: There exists a non-(0, k)-colorable planar graph with girth 6!

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5: There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 6: There exists a non-(0, k)-colorable planar graph with girth 6! Girth 7:

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5: There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 6: There exists a non-(0, k)-colorable planar graph with girth 6! Girth 7:

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 7 is $(0, 2\gamma + 8)$ -colorable.

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5: There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 6: There exists a non-(0, k)-colorable planar graph with girth 6! Girth 7:

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 7 is $(0, 5 + \lceil \sqrt{14\gamma + 22} \rceil)$ -colorable.

Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5: There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 6: There exists a non-(0, k)-colorable planar graph with girth 6! Girth 7:

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 7 is $(0, 5 + \lceil \sqrt{14\gamma + 22} \rceil)$ -colorable. T!

Improper coloring sparser graphs on surfaces...... girth condition! Girth 4: There exists a non- (d_1, d_2) -colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Every graph on S_0 with girth ≥ 4 is (0, 0, 0)-colorable.

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 4 is $(0, 0, \lceil \frac{10\gamma+32}{3} \rceil)$ -colorable. Tight!

Girth 5: There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on S_{γ} with girth ≥ 5 is $(1, \max\{10, \lceil \frac{12\gamma+47}{7} \rceil\})$ -colorable. T!

Girth 6: There exists a non-(0, k)-colorable planar graph with girth 6! Girth 7:

Theorem (C.–Esperet 2016++)

Every graph on S_{γ} with girth ≥ 7 is $(0, 5 + \lceil \sqrt{14\gamma + 22} \rceil)$ -colorable. T!

Improper coloring graphs on surfaces with girth conditions: SOLVED!

Theorem (C.–Esperet 2016++, Choi–C.–Jeong–Suh 2016+)

There exists a non- $(1, k, \ell)$ -colorable planar graph. There exists a non- (k, ℓ) -colorable planar graph with girth 4! There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (C.–Esperet 2016++, Choi–C.–Jeong–Suh 2016+)

There exists a non- $(1, k, \ell)$ -colorable planar graph. There exists a non- (k, ℓ) -colorable planar graph with girth 4! There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (C.–Esperet 2016++)

A graph on S_{γ} with girth $\geq \ell$ is $(0, O(\sqrt{\gamma/\ell}))$ -colorable.

Theorem (C.–Esperet 2016++, Choi–C.–Jeong–Suh 2016+)

There exists a non- $(1, k, \ell)$ -colorable planar graph. There exists a non- (k, ℓ) -colorable planar graph with girth 4! There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (C.–Esperet 2016++)

A graph on S_{γ} with girth $\geq \ell$ is $(0, O(\sqrt{\gamma/\ell}))$ -colorable.

Lemma (C.–Esperet 2016++)

If v is a vertex of a connected graph G on S_{γ} with $\gamma > 0$, then there exists a connected subgraph H containing v such that G/H is planar and every vertex of G has at most $9\gamma - 4$ neighbors in H. open problems

Future directions.....

For planar graphs:

For planar graphs:

Determine the remaining values in this table of $g(d_1, d_2)$:

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
7	7	5 or 6	5	5	5	5
8	7	5 or 6	5	5	5	5
9	7	5 or 6	5	5	5	5
10	7	5	5	5	5	5

For planar graphs:

Determine the remaining values in this table of $g(d_1, d_2)$:

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
7	7	5 or 6	5	5	5	5
8	7	5 or 6	5	5	5	5
9	7	5 or 6	5	5	5	5
10	7	5	5	5	5	5

Determine g(0, 1)!

For planar graphs:

Determine the remaining values in this table of $g(d_1, d_2)$:

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
7	7	5 or 6	5	5	5	5
8	7	5 or 6	5	5	5	5
9	7	5 or 6	5	5	5	5
10	7	5	5	5	5	5

Determine g(0, 1)!

Is there another "jump" besides between g(0,1) and g(0,2)?!

For graphs on surfaces:

For graphs on surfaces:

Theorem (Cowen–Goddard–Jesurum 1997)

Every toroidal graph is (1, 1, 1, 1, 1)-colorable and (2, 2, 2)-colorable.

Question: Is every toroidal graph (1, 1, 1, 1)-colorable?

For graphs on surfaces:

Theorem (Cowen–Goddard–Jesurum 1997)

Every toroidal graph is (1, 1, 1, 1, 1)-colorable and (2, 2, 2)-colorable.

Question: Is every toroidal graph (1, 1, 1, 1)-colorable?

Theorem (C.–Esperet 16++,	Choi-CJeong-Suh	16+, Woodall 11)
-----------	------------------	-----------------	------------------

There exists a non- $(1, k, \ell)$ -colorable planar graph.

For graphs on surfaces:

Theorem (Cowen–Goddard–Jesurum 1997)

Every toroidal graph is (1, 1, 1, 1, 1)-colorable and (2, 2, 2)-colorable.

Question: Is every toroidal graph (1, 1, 1, 1)-colorable?

Theorem (C.–Esperet 16++, Choi–C.–Jeong–Suh 16+, Woodall 11)

There exists a non- $(1, k, \ell)$ -colorable planar graph.

A graph on S_{γ} is $(9, c_3, c_3)$ -colorable with $c_3 = \max\{9, 2 + \sqrt{4\gamma + 6}\}$.

For graphs on surfaces:

Theorem (Cowen–Goddard–Jesurum 1997)

Every toroidal graph is (1, 1, 1, 1, 1)-colorable and (2, 2, 2)-colorable.

Question: Is every toroidal graph (1, 1, 1, 1)-colorable?

Theorem (C.–Esperet 16++, Choi–C.–Jeong–Suh 16+, Woodall 11)

There exists a non- $(1, k, \ell)$ -colorable planar graph.

A graph on S_{γ} is $(9, c_3, c_3)$ -colorable with $c_3 = \max\{9, 2 + \sqrt{4\gamma + 6}\}$.

Question: is there a function $f=f(\gamma)\in o(\gamma)$ such that a graph on S_{γ} is (2, f, f)-colorable?

For graphs on surfaces:

For graphs on surfaces:

Theorem (C.–Esperet 2016++)

A graph on S_{γ} with girth $\geq \ell$ is $(0, O(\sqrt{\gamma/\ell}))$ -colorable.

For graphs on surfaces:

Theorem (C.–Esperet 2016++)

A graph on S_{γ} with girth $\geq \ell$ is $(0, O(\sqrt{\gamma/\ell}))$ -colorable.

Conjecture (C.–Esperet 2016++)

There is a function $c(\ell) \to 0$ as $\ell \to \infty$ such that a graph on S_{γ} with girth $\geq \ell$ is $(0, O(\gamma^{c(\ell)}))$ -colorable.

For graphs on surfaces:

Theorem (C.–Esperet 2016++)

A graph on S_{γ} with girth $\geq \ell$ is $(0, O(\sqrt{\gamma/\ell}))$ -colorable.

Conjecture (C.–Esperet 2016++)

There is a function $c(\ell) \to 0$ as $\ell \to \infty$ such that a graph on S_{γ} with girth $\geq \ell$ is $(0, O(\gamma^{c(\ell)}))$ -colorable.

(0, k)-colorable implies (k + 2)-coloring. We know $c(\ell) \in \Omega(\frac{1}{2\ell+2})$.

For graphs on surfaces:

Theorem (C.–Esperet 2016++)

A graph on S_{γ} with girth $\geq \ell$ is $(0, O(\sqrt{\gamma/\ell}))$ -colorable.

Conjecture (C.–Esperet 2016++)

There is a function $c(\ell) \to 0$ as $\ell \to \infty$ such that a graph on S_{γ} with girth $\geq \ell$ is $(0, O(\gamma^{c(\ell)}))$ -colorable.

(0, k)-colorable implies (k + 2)-coloring. We know $c(\ell) \in \Omega(\frac{1}{2\ell+2})$.

Theorem (Gimbel–Thomassen 1997)

For ℓ , there is c > 0 such that for small $\epsilon > 0$ and sufficiently large γ , there are graphs on S_{γ} with girth $\geq \ell$ that are not $c\gamma^{\frac{1-\epsilon}{2\ell+2}}$ -colorable.

Thank you for your attention!

