# Conjectures regarding chi-bounded classes of graphs

# ILKYOO CHOI<sup>1</sup>, O-joung Kwon<sup>2</sup>, and Sang-il Oum<sup>1</sup>

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

Hungarian Academy of Sciences, Budapest, Hungary

December 7, 2015

(1) subgraph

- deleting vertices/edges

# (1) subgraph

- deleting vertices/edges
- (2) topological minor
  - deleting vertices/edges
  - smoothing vertices

# (1) subgraph

- deleting vertices/edges
- (2) topological minor
  - deleting vertices/edges
  - smoothing vertices
- (3) minor
  - deleting vertices/edges
  - contracting edges

- (1) subgraph
  - deleting vertices/edges
- (2) topological minor
  - deleting vertices/edges
  - smoothing vertices
- (3) minor
  - deleting vertices/edges
  - contracting edges

- [1] induced subgraph
  - deleting vertices

# (1) subgraph

- deleting vertices/edges
- (2) topological minor
  - deleting vertices/edges
  - smoothing vertices
- (3) minor
  - deleting vertices/edges
  - contracting edges

# [1] induced subgraph

- deleting vertices
- [2] pivot-minor
  - deleting vertices
  - pivoting edges

# (1) subgraph

- deleting vertices/edges
- (2) topological minor
  - deleting vertices/edges
  - smoothing vertices
- (3) minor
  - deleting vertices/edges
  - contracting edges

# [1] induced subgraph

- deleting vertices
- [2] pivot-minor
  - deleting vertices
  - pivoting edges
- [3] vertex-minor
  - deleting vertices
  - local complementations at vertices

- (1) subgraph
  - deleting vertices/edges
- (2) topological minor
  - deleting vertices/edges
  - smoothing vertices
- (3) minor
  - deleting vertices/edges
  - contracting edges

- [1] induced subgraph
  - deleting vertices
- [2] pivot-minor
  - deleting vertices
  - pivoting edges
- [3] vertex-minor
  - deleting vertices
  - local complementations at vertices

More operations imply easier to get the structure! No *H*-vertex-minor implies no *H*-pivot-minor implies *H*-free.

A graph G is *k*-colorable if the following is possible:

– each vertex receives a color from  $\{1, \ldots, k\}$ 

- adjacent vertices receive different colors

The chromatic number  $\chi(G)$  is the minimum such k.

A graph G is k-colorable if the following is possible:

– each vertex receives a color from  $\{1, \ldots, k\}$ 

- adjacent vertices receive different colors

The chromatic number  $\chi(G)$  is the minimum such k.

 $\omega(G) \leq \chi(G)$ 

A graph G is *k*-colorable if the following is possible:

– each vertex receives a color from  $\{1, \ldots, k\}$ 

- adjacent vertices receive different colors

The chromatic number  $\chi(G)$  is the minimum such k.

 $\omega(G) \leq \chi(G)$ 

#### Strong Perfect Graph Conjecture (1961 Berge)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

A graph G is *k*-colorable if the following is possible:

– each vertex receives a color from  $\{1, \ldots, k\}$ 

- adjacent vertices receive different colors

The chromatic number  $\chi(G)$  is the minimum such k.

 $\omega(G) \leq \chi(G)$ 

#### Strong Perfect Graph Conjecture (1961 Berge)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

#### Theorem (2006 Chudnovsky–Robertson–Seymour–Thomas)

The Strong Perfect Graph Conjecture is true.

#### Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

#### Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

#### Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

Strong Perfect Graph Thm (06 Chudnovsky-Robertson-Seymour-Thomas)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

#### Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

Strong Perfect Graph Thm (06 Chudnovsky-Robertson-Seymour-Thomas)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

Forbidding (infinitely many) induced subgraphs makes a graph perfect.

#### Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

Strong Perfect Graph Thm (06 Chudnovsky-Robertson-Seymour-Thomas)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

Forbidding (infinitely many) induced subgraphs makes a graph perfect.

#### Definition

A class C of graphs is  $\chi$ -bounded if there is a function f where  $\chi(G) \leq f(\omega(G))$  for all  $G \in C$ .

#### Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

Strong Perfect Graph Thm (06 Chudnovsky-Robertson-Seymour-Thomas)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

Forbidding (infinitely many) induced subgraphs makes a graph perfect.

#### Definition

A class C of graphs is  $\chi$ -bounded if there is a function f where  $\chi(G) \leq f(\omega(G))$  for all  $G \in C$ .

What happens when we forbid one induced subgraph?

# Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

Strong Perfect Graph Thm (06 Chudnovsky-Robertson-Seymour-Thomas)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

Forbidding (infinitely many) induced subgraphs makes a graph perfect.

#### Definition

A class C of graphs is  $\chi$ -bounded if there is a function f where  $\chi(G) \leq f(\omega(G))$  for all  $G \in C$ .

What happens when we forbid one induced subgraph? For which *H* is the class of *H*-(induced subgraph)-free graphs  $\chi$ -bounded?

#### Theorem (1955 Mycielski, 1954 Blanche Descartes, 1959 Erdős)

For any k, there exists a graph G with no triangle and  $\chi(G) \ge k$ . For any k, there exists a graph G with girth at least 6 and  $\chi(G) \ge k$ . For any k, g, there exists a graph G with girth at least g and  $\chi(G) \ge k$ .

Strong Perfect Graph Thm (06 Chudnovsky-Robertson-Seymour-Thomas)

Given a graph G, every induced subgraph H satisfies  $\omega(H) = \chi(H)$  iff G contains no  $C_k$  and no  $\overline{C_k}$  as induced subgraphs for any odd  $k \ge 5$ .

Forbidding (infinitely many) induced subgraphs makes a graph perfect.

#### Definition

A class C of graphs is  $\chi$ -bounded if there is a function f where  $\chi(G) \leq f(\omega(G))$  for all  $G \in C$ .

What happens when we forbid one induced subgraph? For which *H* is the class of *H*-(induced subgraph)-free graphs  $\chi$ -bounded? *H* cannot contain a cycle!

The class of *H*-free graphs is  $\chi$ -bounded if and only if *H* is a forest.

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

1980 Gyárfás–Szemerédi–Tuza: for triangle-free classes and H is a broom1987 Gyárfás:H is a broom1990 Kierstead–Penrise and 1993 Sauer:may assume H is a tree1993 Kierstead–Rődl:for  $K_{n,n}$ -free classes1994 Kierstead–Penrise:H is any tree of radius at most 22004 Kierstead–Zhu:H is a special tree of radius at most 3

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

| 1980 | Gyárfás–Szemerédi–Tuza:    | for triangle-free | classes and I                 | H is a broom               |
|------|----------------------------|-------------------|-------------------------------|----------------------------|
| 1987 | Gyárfás:                   |                   |                               | H is a broom               |
| 1990 | Kierstead-Penrise and 1993 | 3 Sauer:          | may assum                     | e H is a <mark>tree</mark> |
| 1993 | Kierstead–Rődl:            |                   | for <mark>K</mark> n,         | n-free classes             |
| 1994 | Kierstead–Penrise:         | H is an           | y tree of <mark>rad</mark> i  | us at most 2               |
| 2004 | Kierstead–Zhu:             | H is a specia     | al tree of <mark>rad</mark> i | us at most 3               |

#### Theorem (1997 Scott)

For any tree **T**, the class of graphs with no **T**-subdivision is  $\chi$ -bounded.

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

| 1980 | Gyárfás-Szemerédi-Tuza: fo | or triangle-free           | classes and $H$ is a             | a broom                |
|------|----------------------------|----------------------------|----------------------------------|------------------------|
| 1987 | Gyárfás:                   |                            | <i>H</i> is a                    | a broom                |
| 1990 | Kierstead-Penrise and 1993 | Sauer:                     | may assume H                     | is a <mark>tree</mark> |
| 1993 | Kierstead–Rődl:            |                            | for K <sub>n,n</sub> -free       | e classes              |
| 1994 | Kierstead–Penrise:         | H is an                    | y tree of <mark>radius</mark> at | most 2                 |
| 2004 | Kierstead–Zhu:             | H is a <mark>specia</mark> | I tree of <mark>radius</mark> at | most 3                 |

#### Theorem (1997 Scott)

For any tree T, the class of graphs with no T-subdivision is  $\chi$ -bounded.

#### Conjecture (1997 Scott)

For any graph H, the class of graphs with no H-subdivision is  $\chi$ -bounded.

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

| 1980 | Gyárfás-Szemerédi-Tuza: fo | or triangle-free           | classes and $H$ is a             | a broom                |
|------|----------------------------|----------------------------|----------------------------------|------------------------|
| 1987 | Gyárfás:                   |                            | <i>H</i> is a                    | a broom                |
| 1990 | Kierstead-Penrise and 1993 | Sauer:                     | may assume H                     | is a <mark>tree</mark> |
| 1993 | Kierstead–Rődl:            |                            | for K <sub>n,n</sub> -free       | e classes              |
| 1994 | Kierstead–Penrise:         | H is an                    | y tree of <mark>radius</mark> at | most 2                 |
| 2004 | Kierstead–Zhu:             | H is a <mark>specia</mark> | I tree of <mark>radius</mark> at | most 3                 |

#### Theorem (1997 Scott)

For any tree T, the class of graphs with no T-subdivision is  $\chi$ -bounded.

#### Conjecture (1997 Scott DISPROVED!)

For any graph H, the class of graphs with no H-subdivision is  $\chi$ -bounded.

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

| 1980 | Gyárfás-Szemerédi-Tuza: fo | or triangle-free           | classes and $H$ is a             | a broom                |
|------|----------------------------|----------------------------|----------------------------------|------------------------|
| 1987 | Gyárfás:                   |                            | <i>H</i> is a                    | a broom                |
| 1990 | Kierstead-Penrise and 1993 | Sauer:                     | may assume H                     | is a <mark>tree</mark> |
| 1993 | Kierstead–Rődl:            |                            | for K <sub>n,n</sub> -free       | e classes              |
| 1994 | Kierstead–Penrise:         | H is an                    | y tree of <mark>radius</mark> at | most 2                 |
| 2004 | Kierstead–Zhu:             | H is a <mark>specia</mark> | I tree of <mark>radius</mark> at | most 3                 |

#### Theorem (1997 Scott)

For any tree T, the class of graphs with no T-subdivision is  $\chi$ -bounded.

#### Conjecture (1997 Scott DISPROVED!)

For any graph H, the class of graphs with no H-subdivision is  $\chi$ -bounded.

2013 Pawlik–Kozik–Krawczyk–Lasoń–Micek–Trotter–Walczak:

A family of triangle-free intersection graphs of segments in the plane

- with unbounded chromatic number
- NOT containing a subdivision of any 1-planar graph.

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

| 1980 | Gyárfás-Szemerédi-Tuza: fo | or triangle-free           | classes and $H$ is a             | a broom                |
|------|----------------------------|----------------------------|----------------------------------|------------------------|
| 1987 | Gyárfás:                   |                            | <i>H</i> is a                    | a broom                |
| 1990 | Kierstead-Penrise and 1993 | Sauer:                     | may assume H                     | is a <mark>tree</mark> |
| 1993 | Kierstead–Rődl:            |                            | for K <sub>n,n</sub> -free       | e classes              |
| 1994 | Kierstead–Penrise:         | H is an                    | y tree of <mark>radius</mark> at | most 2                 |
| 2004 | Kierstead–Zhu:             | H is a <mark>specia</mark> | I tree of <mark>radius</mark> at | most 3                 |

#### Theorem (1997 Scott)

For any tree T, the class of graphs with no T-subdivision is  $\chi$ -bounded.

#### Conjecture (1997 Scott DISPROVED!)

For any graph H, the class of graphs with no H-subdivision is  $\chi$ -bounded.

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

| 1980 | Gyárfás-Szemerédi-Tuza: fo | or triangle-free           | classes and $H$ is a             | a broom                |
|------|----------------------------|----------------------------|----------------------------------|------------------------|
| 1987 | Gyárfás:                   |                            | <i>H</i> is a                    | a broom                |
| 1990 | Kierstead-Penrise and 1993 | Sauer:                     | may assume H                     | is a <mark>tree</mark> |
| 1993 | Kierstead–Rődl:            |                            | for K <sub>n,n</sub> -free       | e classes              |
| 1994 | Kierstead–Penrise:         | H is an                    | y tree of <mark>radius</mark> at | most 2                 |
| 2004 | Kierstead–Zhu:             | H is a <mark>specia</mark> | I tree of <mark>radius</mark> at | most 3                 |

#### Theorem (1997 Scott)

For any tree T, the class of graphs with no T-subdivision is  $\chi$ -bounded.

#### Conjecture (1997 Scott DISPROVED!)

For any graph H, the class of graphs with no H-subdivision is  $\chi$ -bounded.

If no forest is forbidden, then infinitely many graphs must be forbidden.

The class of H-free graphs is  $\chi$ -bounded if and only if H is a forest.

| 1980 | Gyárfás-Szemerédi-Tuza: fo | or triangle-free           | classes and $H$ is a             | a broom                |
|------|----------------------------|----------------------------|----------------------------------|------------------------|
| 1987 | Gyárfás:                   |                            | <i>H</i> is a                    | a broom                |
| 1990 | Kierstead-Penrise and 1993 | Sauer:                     | may assume H                     | is a <mark>tree</mark> |
| 1993 | Kierstead–Rődl:            |                            | for K <sub>n,n</sub> -free       | e classes              |
| 1994 | Kierstead–Penrise:         | H is an                    | y tree of <mark>radius</mark> at | most 2                 |
| 2004 | Kierstead–Zhu:             | H is a <mark>specia</mark> | I tree of <mark>radius</mark> at | most 3                 |

#### Theorem (1997 Scott)

For any tree T, the class of graphs with no T-subdivision is  $\chi$ -bounded.

#### Conjecture (1997 Scott DISPROVED!)

For any graph H, the class of graphs with no H-subdivision is  $\chi$ -bounded.

If no forest is forbidden, then infinitely many graphs must be forbidden. Natural to forbid infinitely many cycles!

The following classes are  $\chi$ -bounded:

1.The class of graphs with no induced cycles of odd length  $\geq 5$ 2. Given k, the class of graphs with no induced cycles oflength  $\geq k$ 

3. Given k, the class of graphs with no induced cycles of odd length  $\geq k$ 

The following classes are  $\chi$ -bounded:

1. The class of graphs with no induced cycles of odd length  $\geq 5$ 2. Given k, the class of graphs with no induced cycles of length  $\geq k$ 3. Given k, the class of graphs with no induced cycles of odd length  $\geq k$ 

3. implies both 1. and 2.!

The following classes are  $\chi$ -bounded:

1. The class of graphs with no induced cycles of odd length  $\geq 5$ 2. Given k, the class of graphs with no induced cycles of length  $\geq k$ 3. Given k, the class of graphs with no induced cycles of odd length  $\geq k$ 

3. implies both 1. and 2.!

Partial cases..... no induced cycles of......

The following classes are  $\chi$ -bounded:

1. The class of graphs with no induced cycles of odd length  $\geq 5$ 2. Given k, the class of graphs with no induced cycles of length  $\geq k$ 3. Given k, the class of graphs with no induced cycles of odd length  $\geq k$ 

3. implies both 1. and 2.!

Partial cases..... no induced cycles of......

2008 Addario-Berry-Chudnovsky-Havet-Reed-Seymour:even length2013 Bonamy-Charbit-Thomassé:length divisible by 32015+ Lagoutte:length 3 and even length  $\geq 6$ 2015+ Chudnovsky-Scott-Seymour:length 3 and odd length  $\geq 7$ length 5 and length 3 and odd length  $\geq k$ length 5 and length 3 and odd length  $\geq k$ 

The following classes are  $\chi$ -bounded:

1. The class of graphs with no induced cycles of odd length  $\geq 5$ 2. Given k, the class of graphs with no induced cycles of length  $\geq k$ 3. Given k, the class of graphs with no induced cycles of odd length  $\geq k$ 

3. implies both 1. and 2.!

Partial cases..... no induced cycles of......

```
2008 Addario-Berry-Chudnovsky-Havet-Reed-Seymour:even length2013 Bonamy-Charbit-Thomassé:length divisible by 32015+ Lagoutte:length 3 and even length \geq 62015+ Chudnovsky-Scott-Seymour:length 3 and odd length \geq 7length 5 and length 3 and odd length \geq klength 5 and length 3 and odd length \geq k2015+ Scott-Seymour:length 5 and length \geq k
```

The following classes are  $\chi$ -bounded:

1. The class of graphs with no induced cycles of odd length  $\geq 5$ 2. Given k, the class of graphs with no induced cycles of length  $\geq k$ 3. Given k, the class of graphs with no induced cycles of odd length  $\geq k$ 

3. implies both 1. and 2.!

Partial cases..... no induced cycles of......

- (1) subgraph
  - deleting vertices/edges
- (2) topological minor
  - deleting vertices/edges
  - smoothing vertices
- (3) minor
  - deleting vertices/edges
  - contracting edges

- [1] induced subgraph
  - deleting vertices
- [2] pivot-minor
  - deleting vertices
  - pivoting edges
- [3] vertex-minor
  - deleting vertices
  - local complementations at vertices

More operations imply easier to get the structure! No *H*-vertex-minor implies no *H*-pivot-minor implies *H*-free.

# Bipartite graph

Distance-hereditary

Parity graph

Circle graph

Bipartite graph: vertex set has a partition into two independent sets

Distance-hereditary: distances are preserved in every induced subgraph

Parity graph: shortest paths joining a pair of vertices have the same parity

Circle graph: intersection graph of chords on a circle

Distance-hereditary: distances are preserved in every induced subgraph no  $C_5$ -vertex-minor (1987, 1988 Bouchet) no  $C_5$ ,  $C_6$ -pivot-minors (1986 Bandelt-Mulder)

Parity graph: shortest paths joining a pair of vertices have the same parityno $C_5$ -pivot-minor(1984 Burlet–Uhry)

Circle graph: intersection graph of chords on a circle three forbidden vertex-minors (1994 Bouchet) fifteen forbidden pivot-minors (2009 Geelen–Oum)

Distance-hereditary: distances are preserved in every induced subgraph no  $C_5$ -vertex-minor (1987, 1988 Bouchet) no  $C_5$ ,  $C_6$ -pivot-minors (1986 Bandelt-Mulder)

Parity graph: shortest paths joining a pair of vertices have the same parityno $C_5$ -pivot-minor(1984 Burlet–Uhry)

Circle graph: intersection graph of chords on a circle three forbidden vertex-minors (1994 Bouchet) fifteen forbidden pivot-minors (2009 Geelen–Oum)





Distance-hereditary: distances are preserved in every induced subgraph no  $C_5$ -vertex-minor (1987, 1988 Bouchet) no  $C_5$ ,  $C_6$ -pivot-minors (1986 Bandelt-Mulder)

Parity graph: shortest paths joining a pair of vertices have the same parityno $C_5$ -pivot-minor(1984 Burlet–Uhry)

Circle graph: intersection graph of chords on a circle three forbidden vertex-minors (1994 Bouchet) fifteen forbidden pivot-minors (2009 Geelen–Oum)

Distance-hereditary: distances are preserved in every induced subgraph no  $C_5$ -vertex-minor (1987, 1988 Bouchet) no  $C_5$ ,  $C_6$ -pivot-minors (1986 Bandelt-Mulder)

Parity graph: shortest paths joining a pair of vertices have the same parityno $C_5$ -pivot-minor(1984 Burlet-Uhry)

Circle graph: intersection graph of chords on a circle three forbidden vertex-minors (1994 Bouchet) fifteen forbidden pivot-minors (2009 Geelen–Oum)

Bipartite, distance-hereditary, parity graphs are perfect, thus  $\chi$ -bounded. Circle graphs are  $\chi$ -bounded. (1997 Kostochka–Kratochvíl)

Distance-hereditary: distances are preserved in every induced subgraph no  $C_5$ -vertex-minor (1987, 1988 Bouchet) no  $C_5$ ,  $C_6$ -pivot-minors (1986 Bandelt-Mulder)

Parity graph: shortest paths joining a pair of vertices have the same parityno $C_5$ -pivot-minor(1984 Burlet–Uhry)

Circle graph: intersection graph of chords on a circle three forbidden vertex-minors (1994 Bouchet) fifteen forbidden pivot-minors (2009 Geelen–Oum)

Bipartite, distance-hereditary, parity graphs are perfect, thus  $\chi$ -bounded. Circle graphs are  $\chi$ -bounded. (1997 Kostochka–Kratochvíl)

Conjecture (Geelen)

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

2012 Dvořák-Král':

H is  $W_5$ 

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

2012 Dvořák–Král': 2015+ Chudnovsky–Scott–Seymour: H is  $W_5$ H is a cycle

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

2012 Dvořák–Král':H is  $W_5$ 2015+ Chudnovsky–Scott–Seymour:H is a cycle(The class of graphs with no induced cycles of long length is  $\chi$ -bounded)

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

2012 Dvořák–Král':H is  $W_5$ 2015+ Chudnovsky–Scott–Seymour:H is a cycle(The class of graphs with no induced cycles of long length is  $\chi$ -bounded)

#### Theorem (2015+ C.–Kwon–Oum)

For any fan F, the class of graphs with no F-vertex-minor is  $\chi$ -bounded.

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

2012 Dvořák–Král':H is  $W_5$ 2015+ Chudnovsky–Scott–Seymour:H is a cycle(The class of graphs with no induced cycles of long length is  $\chi$ -bounded)

#### Theorem (2015+ C.–Kwon–Oum)

For any fan F, the class of graphs with no F-vertex-minor is  $\chi$ -bounded.

#### Theorem (2015+ C.–Kwon–Oum)

For any cycle C, the class of graphs with no C-pivot-minor is  $\chi$ -bounded.

For any H, the class of graphs with no H-vertex-minor is  $\chi$ -bounded.

2012 Dvořák–Král':H is  $W_5$ 2015+ Chudnovsky–Scott–Seymour:H is a cycle(The class of graphs with no induced cycles of long length is  $\chi$ -bounded)

#### Theorem (2015+ C.–Kwon–Oum)

For any fan F, the class of graphs with no F-vertex-minor is  $\chi$ -bounded.

#### Theorem (2015+ C.–Kwon–Oum)

For any cycle C, the class of graphs with no C-pivot-minor is  $\chi$ -bounded.

#### Question (2015+ C.-Kwon-Oum)

For any H, is the class of graphs with no H-pivot-minor  $\chi$ -bounded?

#### Conjecture (1985 Gyárfás)

The following classes are  $\chi$ -bounded:

- 1. The class of graphs with no induced cycles of odd length  $\geq 5$
- 2. The class of graphs with no induced cycles of  $length \ge k$
- 3. The class of graphs with no induced cycles of odd length  $\geq k$

#### Conjecture (1995 Geelen)

For any **H**, the class of graphs with no **H**-vertex-minor is  $\chi$ -bounded.

#### Conjecture (1985 Gyárfás)

The following classes are  $\chi$ -bounded:

- 1. The class of graphs with no induced cycles of odd length  $\geq 5$
- 2. The class of graphs with no induced cycles of  $length \ge k$
- 3. The class of graphs with no induced cycles of odd length  $\geq k$

#### Question (2015+ C.-Kwon-Oum)

For any H, is the class of graphs with no H-pivot-minor  $\chi$ -bounded?

#### Conjecture (1995 Geelen)

For any **H**, the class of graphs with no **H**-vertex-minor is  $\chi$ -bounded.

# Theorem (2015+ C.-Kwon-Oum)

For any fan F, class of graphs with no F-vertex-minor is  $\chi$ -bounded.

#### Theorem (2015+ C.–Kwon–Oum)

For any fan F, class of graphs with no F-vertex-minor is  $\chi$ -bounded. For any k, every graph G with no  $F_k$ -vertex-minor satisfies

 $\chi(G) \leq 2(\omega(G) - 1)^{g_3[k, 2g_2(k) \{g_5(2g_2(k) - 1, g_4(k) - 2) - 1\} + 1] - 1}$ 

#### Theorem (2015+ C.–Kwon–Oum)

For any fan F, class of graphs with no F-vertex-minor is  $\chi$ -bounded. For any k, every graph G with no  $F_k$ -vertex-minor satisfies

$$\chi(G) \leq 2(\omega(G) - 1)^{g_3[k, 2g_2(k) \{g_5(2g_2(k) - 1, g_4(k) - 2) - 1\} + 1] - 1}$$

For positive integers k and  $\ell$ :

#### Theorem (2015+ C.–Kwon–Oum)

For any fan F, class of graphs with no F-vertex-minor is  $\chi$ -bounded. For any k, every graph G with no  $F_k$ -vertex-minor satisfies

$$\chi(G) \leq 2(\omega(G) - 1)^{g_3[k, 2g_2(k) \{g_5(2g_2(k) - 1, g_4(k) - 2) - 1\} + 1] - 1}$$

For positive integers k and  $\ell$ :

- $= g_1(k,\ell) := R \left( 3(R(k,k) + k 1)((2^{k-1} 1)^2 k^2 + 1), 2\ell + 1 \right)$
- h(1) := 2 and  $h(i+1) := g_1(k, h(i))$  for all  $i \ge 1$
- $g_2(k) := h(2^{k-1}+1)$
- $g_3(k, \ell) := k^{k^{2^{\ell+1}}-1} 1$
- $g_4(k) := (2^k 1)^2 + 1$
- $g_5(k,\ell) := \frac{k}{k-2}(k-1)^{\ell}$

Proof idea:

(1) if  $\chi(G)$  is large, then G contains a ladder graph as a vertex-minor (2) ladder graph contains  $F_k$ -vertex-minor

#### Theorem (2015+ C.-Kwon-Oum)

For any fan F, class of graphs with no F-vertex-minor is  $\chi$ -bounded. For any k, every graph G with no  $F_k$ -vertex-minor satisfies

 $\chi(G) \leq 2(\omega(G) - 1)^{g_3[k, 2g_2(k) \{g_5(2g_2(k) - 1, g_4(k) - 2) - 1\} + 1] - 1}$ 

#### Proposition

Let k be a positive integer and let  $\ell \ge R(k, k)^{4k^2-1} + 1$ . Let H be a connected graph with at least  $\ell$  vertices. If  $v_1, \ldots, v_\ell$  are pairwise distinct vertices of H and  $w_1, \ldots, w_\ell$  are the  $\ell$  leaves of  $E_\ell$ , then the graph obtained by identifying  $v_i$  and  $w_i$  for each  $i \in \{1, \ldots, \ell\}$  results in a graph that contains a vertex-minor isomorphic to  $F_k$ .



# Theorem (2015+ C.-Kwon-Oum)

For any cycle C, class of graphs with no C-pivot-minor is  $\chi$ -bounded.

# Theorem (2015+ C.–Kwon–Oum)

For any cycle C, class of graphs with no C-pivot-minor is  $\chi$ -bounded. For any k, every graph G with no  $C_k$ -pivot-minor satisfies

$$\chi(G) \leq 2(\omega(G) - 1)^{2(k-2)(12k^2 + k - 3) + 1}$$

# Theorem (2015+ C.–Kwon–Oum)

For any cycle C, class of graphs with no C-pivot-minor is  $\chi$ -bounded. For any k, every graph G with no  $C_k$ -pivot-minor satisfies

$$\chi(G) \leq 2(\omega(G) - 1)^{2(k-2)(12k^2+k-3)+1}$$

Proof idea:

(1) if  $\chi(G)$  is large, then G contains an incomplete fan as a pivot-minor (2) an incomplete fan contains  $C_k$ -pivot-minor

#### Theorem (2015+ C.–Kwon–Oum)

For any cycle C, class of graphs with no C-pivot-minor is  $\chi$ -bounded. For any k, every graph G with no  $C_k$ -pivot-minor satisfies

$$\chi(G) \leq 2(\omega(G)-1)^{2(k-2)(12k^2+k-3)+1}$$

Proof idea:

(1) if  $\chi(G)$  is large, then G contains an incomplete fan as a pivot-minor (2) an incomplete fan contains  $C_k$ -pivot-minor

 $p_{i_t}$ 



Conjectures regarding chi-bounded classes of graphs





#### Conjecture (1985 Gyárfás)

The following classes are  $\chi$ -bounded:

- 1. The class of graphs with no induced cycles of odd length  $\geq 5$
- 2. The class of graphs with no induced cycles of  $length \ge k$
- 3. The class of graphs with no induced cycles of odd length  $\geq k$

#### Question (2015+ C.-Kwon-Oum)

For any H, is the class of graphs with no H-pivot-minor  $\chi$ -bounded?

#### Conjecture (1995 Geelen)

For any **H**, the class of graphs with no **H**-vertex-minor is  $\chi$ -bounded.

Conjectures regarding chi-bounded classes of graphs

# Thank you for your attention!