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Characterization of Cycle Obstructions for Improper Coloring Planar Graphs

A set X of graphs is an obstruction for a graph class C
if a graph G satisfies H 6⊆ G for all H ∈ X , then G ∈ C.

A graph G is k-colorable if the following is possible:
– each vertex receives a color from {1, . . . , k}
– adjacent vertices receive different colors

Theorem (1941 Brooks)

A graph G is ∆(G )-colorable if and only if
C2n+1 6⊂ G when ∆(G ) = 2 and K∆(G)+1 6⊂ G .

∆(G ) = 2: Odd cycles are obstructions to be ∆(G )-colorable!
∆(G ) 6= 2: Complete graphs are obstructions to be ∆(G )-colorable!

Theorem (1977 Appel–Haken)

Planar graph are 4-colorable.

There are no obstructions for planar graphs to be 4-colorable!
What about 3-colorable?!
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Characterization of Cycle Obstructions for Improper Coloring Planar Graphs

Theorem (1959 Grötzsch)

Planar graphs with no C3 are 3-colorable.

C3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C3 are 3-colorable.

Havel’s Question (1961)

Does there exist a constant C such that
planar graphs with pairwise C3 distance at least C are 3-colorable?

Theorem (1980 Aksionov–Mel’nikov)

If C exists, then C ≥ 4.

(Is C ≤ 5?) C exists!

(C ≤ 10100)

Theorem (2011 Borodin–Glebov, 2014 Dvǒrák)

Planar graphs with d3 ≥ 2 and no C5 are 3-colorable.
Planar graphs with d4− ≥ 26 are 3-colorable.
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Planar graphs with no C3 are 3-colorable.

C3 is an obstruction for planar graphs to be 3-colorable!
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Characterization of Cycle Obstructions for Improper Coloring Planar Graphs

Guaranteeing 3-colorings of planar graphs via forbidding cycle lengths

3 4 5 6 7 8 9 authors year
X Grötzsch 1959

X X X X Zhang–Wu 2005
X X X Xu 2006
X X X X Wang–Lu–Chen 2010
X X X X Chen–Raspaud–Wang 2007
X X X Chen–Wang 2007
X X X X Wang–Wu–Shen 2011

Steinberg’s Conjecture (1976)

Planar graphs with no C4, C5 are 3-colorable.

FALSE!
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X Grötzsch 1959

X X X X Zhang–Wu 2005
X X X Xu 2006
X X X X Wang–Lu–Chen 2010
X X X X Chen–Raspaud–Wang 2007
X X X Chen–Wang 2007
X X X X Wang–Wu–Shen 2011

Steinberg’s Conjecture (1976)

Planar graphs with no C4, C5 are 3-colorable.

FALSE!



Characterization of Cycle Obstructions for Improper Coloring Planar Graphs

Guaranteeing 3-colorings of planar graphs via forbidding cycle lengths

3 4 5 6 7 8 9 authors year
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X Grötzsch 1959

X X X X Zhang–Wu 2005
X X X Xu 2006
X X X X Wang–Lu–Chen 2010
X X X X Chen–Raspaud–Wang 2007
X X X Chen–Wang 2007
X X X X Wang–Wu–Shen 2011

Steinberg’s Conjecture (1976)

Planar graphs with no C4, C5 are 3-colorable. FALSE!

Question (Erdös)

Find the min k where planar graphs with no C4, . . . , Ck are 3-colorable.

Question

Are planar graphs with no C4, C5, C6 indeed 3-colorable?



Characterization of Cycle Obstructions for Improper Coloring Planar Graphs

A set X of integers is a cycle obstruction for a graph class C
if a graph G satisfies C` 6⊆ G for all ` ∈ X , then G ∈ C.

A graph G is k-colorable if the following is possible:
– partition the vertex set of G into k parts
– each part has maximum degree at most 0

A graph G is (d1, . . . , dk)-colorable if the following is possible:
– partition the vertex set of G into k parts
– ith part has maximum degree at most di for i ∈ {1, . . . , k}
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A class C of graphs is balanced k-partitionable,
if ∃D ≥ 0 such that all graphs in C are (D, . . . ,D)-colorable.

A class C of graphs is unbalanced k-partitionable,
if ∃D ≥ 0 such that all graphs in C are (0, . . . , 0,D)-colorable.
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Planar graphs with no C` where ` ∈ X are balanced 2-partitionable
if and only if 4 ∈ X or {odd integers} ⊆ X .

No sufficient forbidden cycle condition exists for balanced 1-partitionable!
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