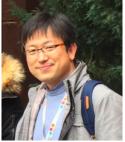
Characterization of Cycle Obstructions for Improper Coloring Planar Graphs

ILKYOO CHOI

KAIST, Korea

Joint work with

Chun-Hung Liu



Sang-il Oum

- A graph G is k-colorable if the following is possible:
 - each vertex receives a color from $\{1, \ldots, k\}$
 - adjacent vertices receive different colors

A graph G is *k*-colorable if the following is possible:

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

Theorem (1941 Brooks)

A graph G is $\Delta(G)$ -colorable if and only if $C_{2n+1} \not\subset G$ when $\Delta(G) = 2$ and $K_{\Delta(G)+1} \not\subset G$.

A graph G is k-colorable if the following is possible:

- each vertex receives a color from $\{1, \ldots, k\}$
- adjacent vertices receive different colors

Theorem (1941 Brooks)

A graph G is $\Delta(G)$ -colorable if and only if $C_{2n+1} \not\subset G$ when $\Delta(G) = 2$ and $K_{\Delta(G)+1} \not\subset G$.

 $\Delta(G) = 2$: Odd cycles are obstructions to be $\Delta(G)$ -colorable! $\Delta(G) \neq 2$: Complete graphs are obstructions to be $\Delta(G)$ -colorable!

A graph G is k-colorable if the following is possible:

- each vertex receives a color from $\{1, \ldots, k\}$

- adjacent vertices receive different colors

Theorem (1941 Brooks)

A graph G is $\Delta(G)$ -colorable if and only if $C_{2n+1} \not\subset G$ when $\Delta(G) = 2$ and $K_{\Delta(G)+1} \not\subset G$.

 $\Delta(G) = 2$: Odd cycles are obstructions to be $\Delta(G)$ -colorable! $\Delta(G) \neq 2$: Complete graphs are obstructions to be $\Delta(G)$ -colorable!

Theorem (1977 Appel–Haken)

Planar graph are 4-colorable.

A graph G is *k*-colorable if the following is possible:

- each vertex receives a color from $\{1, \ldots, k\}$

- adjacent vertices receive different colors

Theorem (1941 Brooks)

A graph G is $\Delta(G)$ -colorable if and only if $C_{2n+1} \not\subset G$ when $\Delta(G) = 2$ and $K_{\Delta(G)+1} \not\subset G$.

 $\Delta(G) = 2$: Odd cycles are obstructions to be $\Delta(G)$ -colorable! $\Delta(G) \neq 2$: Complete graphs are obstructions to be $\Delta(G)$ -colorable!

Theorem (1977 Appel–Haken)

Planar graph are 4-colorable.

There are no obstructions for planar graphs to be 4-colorable!

A graph G is *k*-colorable if the following is possible:

- each vertex receives a color from $\{1, \ldots, k\}$

- adjacent vertices receive different colors

Theorem (1941 Brooks)

A graph G is $\Delta(G)$ -colorable if and only if $C_{2n+1} \not\subset G$ when $\Delta(G) = 2$ and $K_{\Delta(G)+1} \not\subset G$.

 $\Delta(G) = 2$: Odd cycles are obstructions to be $\Delta(G)$ -colorable! $\Delta(G) \neq 2$: Complete graphs are obstructions to be $\Delta(G)$ -colorable!

Theorem (1977 Appel–Haken)

Planar graph are 4-colorable.

There are no obstructions for planar graphs to be 4-colorable! What about 3-colorable?!

Planar graphs with no C_3 are 3-colorable.

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C_3 are 3-colorable.

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C_3 are 3-colorable.

Havel's Question (1961)

Does there exist a constant C such that planar graphs with pairwise C_3 distance at least C are 3-colorable?

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C_3 are 3-colorable.

Havel's Question (1961)

Does there exist a constant C such that planar graphs with pairwise C_3 distance at least C are 3-colorable?

Theorem (1980 Aksionov–Mel'nikov)

If C exists, then $C \ge 4$.

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C_3 are 3-colorable.

Havel's Question (1961)

Does there exist a constant C such that planar graphs with pairwise C_3 distance at least C are 3-colorable?

Theorem (1980 Aksionov–Mel'nikov)

If C exists, then $C \ge 4$. (Is $C \le 5$?)

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C_3 are 3-colorable.

Havel's Question (1961)

Does there exist a constant C such that planar graphs with pairwise C_3 distance at least C are 3-colorable?

Theorem (1980 Aksionov–Mel'nikov, 2009+ Dvořák–Kráľ–Thomas)

If C exists, then $C \ge 4$. (Is $C \le 5$?)

C exists!

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C_3 are 3-colorable.

Havel's Question (1961)

Does there exist a constant C such that planar graphs with pairwise C_3 distance at least C are 3-colorable?

Theorem (1980 Aksionov–Mel'nikov, 2009+ Dvořák–Král'–Thomas)

If C exists, then $C \ge 4$. (Is $C \le 5$?)

C exists! ($C \le 10^{100}$)

Planar graphs with no C_3 are 3-colorable.

 C_3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Grünbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C_3 are 3-colorable.

Havel's Question (1961)

Does there exist a constant C such that planar graphs with pairwise C_3 distance at least C are 3-colorable?

Theorem (1980 Aksionov–Mel'nikov, 2009+ Dvořák–Král'–Thomas)

If C exists, then $C \ge 4$. (Is $C \le 5$?)

C exists! ($C \le 10^{100}$)

Theorem (2011 Borodin–Glebov, 2014 Dvořák)

Planar graphs with $d^3 \ge 2$ and no C_5 are 3-colorable. Planar graphs with $d^{4^-} \ge 26$ are 3-colorable.

Guaranteeing 3-colorings of planar graphs via forbidding cycle lengths

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

Steinberg's Conjecture (1976)

Planar graphs with no C_4 , C_5 are 3-colorable.

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

Steinberg's Conjecture (1976)

Planar graphs with no C_4 , C_5 are 3-colorable.

Question (Erdös)

Find the min k where planar graphs with no C_4, \ldots, C_k are 3-colorable.

There is a planar graph with no C_4 that is NOT 3-colorable.

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

Steinberg's Conjecture (1976)

Planar graphs with no C_4 , C_5 are 3-colorable.

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

Steinberg's Conjecture (1976)

Planar graphs with no C_4 , C_5 are 3-colorable.

Strong Bordeaux Conjecture (2003 Borodin-Raspaud)

Planar graphs with no C_5 and no C_3 adjacent to C_3 are 3-colorable.

Novosibirsk Conjecture (2006 Borodin-Glebov-Jensen-Raspaud)

Planar graphs with no C_3 or C_5 adjacent to C_3 are 3-colorable.

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

Steinberg's Conjecture (1976)

Planar graphs with no C_4 , C_5 are 3-colorable.

FALSE!

Strong Bordeaux Conjecture (2003 Borodin-Raspaud)

Planar graphs with no C_5 and no C_3 adjacent to C_3 are 3-colorable.

Novosibirsk Conjecture (2006 Borodin-Glebov-Jensen-Raspaud)

Planar graphs with no C_3 or C_5 adjacent to C_3 are 3-colorable.

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

Steinberg's Conjecture (1976)

Planar graphs with no C_4 , C_5 are 3-colorable.

FALSE!

Question (Erdös)

Find the min k where planar graphs with no C_4, \ldots, C_k are 3-colorable.

There is a planar graph with no C_4 that is NOT 3-colorable.

3	4	5	6	7	8	9	authors	year
Х							Grötzsch	1959
	Х	Х	Х			Х	Zhang–Wu	2005
	Х	Х		Х			Xu	2006
	Х	Х			Х	Х	Wang–Lu–Chen	2010
	Х		Х	Х		Х	Chen–Raspaud–Wang	2007
	Х		Х		Х		Chen–Wang	2007
	Х			Х	Х	Х	Wang–Wu–Shen	2011

Steinberg's Conjecture (1976)

Planar graphs with no C_4 , C_5 are 3-colorable.

FALSE!

Question (Erdös)

Find the min k where planar graphs with no C_4, \ldots, C_k are 3-colorable.

Question

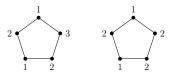
Are planar graphs with no C_4 , C_5 , C_6 indeed 3-colorable?

- A graph G is *k*-colorable if the following is possible:
 - partition the vertex set of G into k parts
 - each part has maximum degree at most 0

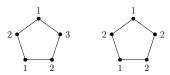
- A graph G is *k*-colorable if the following is possible:
 - partition the vertex set of G into k parts
 - each part has maximum degree at most 0
- A graph G is (d_1, \ldots, d_k) -colorable if the following is possible:
 - partition the vertex set of G into k parts
 - *i*th part has maximum degree at most d_i for $i \in \{1, \ldots, k\}$

- A graph G is *k*-colorable if the following is possible:
 - partition the vertex set of G into k parts
 - each part has maximum degree at most 0
- A graph G is (d_1, \ldots, d_k) -colorable if the following is possible:
 - partition the vertex set of G into k parts
 - *i*th part has maximum degree at most d_i for $i \in \{1, \ldots, k\}$

- A graph G is *k*-colorable if the following is possible:
 - partition the vertex set of G into k parts
 - each part has maximum degree at most 0
- A graph G is (d_1, \ldots, d_k) -colorable if the following is possible:
 - partition the vertex set of G into k parts
 - *i*th part has maximum degree at most d_i for $i \in \{1, \ldots, k\}$



- A graph G is *k*-colorable if the following is possible:
 - partition the vertex set of G into k parts
 - each part has maximum degree at most 0
- A graph G is (d_1, \ldots, d_k) -colorable if the following is possible:
 - partition the vertex set of G into k parts
 - *i*th part has maximum degree at most d_i for $i \in \{1, \ldots, k\}$



A class C of graphs is balanced *k*-partitionable, if $\exists D \ge 0$ such that all graphs in C are (D, \ldots, D) -colorable. A class C of graphs is unbalanced *k*-partitionable, if $\exists D \ge 0$ such that all graphs in C are $(0, \ldots, 0, D)$ -colorable. A set X of integers is a cycle obstruction for a graph class C if a graph G satisfies $C_{\ell} \not\subseteq G$ for all $\ell \in X$, then $G \in C$. A class C of graphs is balanced k-partitionable, if $\exists D \ge 0$ such that all graphs in C are (D, \dots, D) -colorable. A set X of integers is a cycle obstruction for a graph class C if a graph G satisfies $C_{\ell} \not\subseteq G$ for all $\ell \in X$, then $G \in C$. A class C of graphs is balanced k-partitionable, if $\exists D \geq 0$ such that all graphs in C are (D, \dots, D) -colorable.

Theorem (1977 Appel–Haken)

Planar graphs are 4-*colorable* \Leftrightarrow (0, 0, 0, 0)-*colorable.*

A set X of integers is a cycle obstruction for a graph class C if a graph G satisfies $C_{\ell} \not\subseteq G$ for all $\ell \in X$, then $G \in C$. A class C of graphs is balanced k-partitionable, if $\exists D \ge 0$ such that all graphs in C are (D, \dots, D) -colorable. Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

A set X of integers is a cycle obstruction for a graph class C if a graph G satisfies $C_{\ell} \not\subseteq G$ for all $\ell \in X$, then $G \in C$. A class C of graphs is balanced k-partitionable, if $\exists D \geq 0$ such that all graphs in C are (D, \dots, D) -colorable. Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall) Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

Planar graphs are (2, 2, 2)*-colorable.*

Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

Planar graphs are 4-*colorable* \Leftrightarrow (0, 0, 0, 0)-*colorable*

 \Rightarrow balanced k-partitionable for $k \geq 4$.

Planar graphs are (2,2,2)*-colorable* \Rightarrow *balanced* 3*-partitionable*

Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

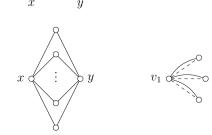
Planar graphs are (2,2,2)*-colorable* \Rightarrow *balanced* 3*-partitionable*

Not all planar graphs are balanced 2-partitionable.

Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable \Rightarrow balanced k-partitionable for $k \ge 4$.Planar graphs are (2, 2, 2)-colorable \Rightarrow balanced 3-partitionable

Not all planar graphs are balanced 2-partitionable.



Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

Planar graphs are (2,2,2)*-colorable* \Rightarrow *balanced* 3*-partitionable*

Theorem (2000 Škrekovski)

Planar graphs with girth at least 5 are balanced 2-partitionable.

Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

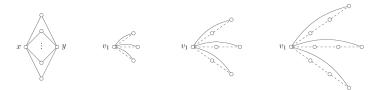
Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

Planar graphs are (2,2,2)*-colorable* \Rightarrow *balanced* 3*-partitionable*

Theorem (2000 Škrekovski)

Planar graphs with girth at least 5 are balanced 2-partitionable.



Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

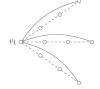
Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

Planar graphs are (2,2,2)*-colorable* \Rightarrow *balanced* 3*-partitionable*

Theorem (2000 Škrekovski)

Planar graphs with girth at least 5 are balanced 2-partitionable.



4 and 3

4 and 5

4 and 7

Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

Planar graphs are (2,2,2)*-colorable* \Rightarrow *balanced* 3*-partitionable*

Theorem (2000 Škrekovski)

Planar graphs with girth at least 5 are balanced 2-partitionable.

Theorem (C.–Liu–Oum 2016++)

Planar graphs with no C_{ℓ} where $\ell \in X$ are balanced 2-partitionable if and only if $4 \in X$ or {odd integers} $\subseteq X$.

Theorem (1977 Appel–Haken, 1986 Cowen–Cowen–Woodall)

Planar graphs are 4-colorable $\Leftrightarrow (0, 0, 0, 0)$ -colorable

 \Rightarrow balanced k-partitionable for $k \geq 4$.

Planar graphs are (2,2,2)*-colorable* \Rightarrow *balanced* 3*-partitionable*

Theorem (2000 Škrekovski)

Planar graphs with girth at least 5 are balanced 2-partitionable.

Theorem (C.–Liu–Oum 2016++)

Planar graphs with no C_{ℓ} where $\ell \in X$ are balanced 2-partitionable if and only if $4 \in X$ or {odd integers} $\subseteq X$.

No sufficient forbidden cycle condition exists for balanced 1-partitionable!

Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable.

Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

Theorem (1977 Appel–Haken)

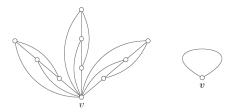
Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

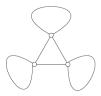
Not all planar graphs are unbalanced 3-partitionable.

Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

Not all planar graphs are unbalanced 3-partitionable.





Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

Theorem (1959 Grötzsch)

Planar graphs with girth at least 4 *are* 3*-colorable* \Leftrightarrow (0,0,0)*-colorable.*

Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

Theorem (1959 Grötzsch)

Planar graphs with girth at least 4 are 3-colorable $\Leftrightarrow (0,0,0)$ -colorable \Rightarrow unbalanced 3-partitionable.

Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

Theorem (1959 Grötzsch)

Planar graphs with girth at least 4 are 3-colorable $\Leftrightarrow (0,0,0)$ -colorable \Rightarrow unbalanced 3-partitionable.

Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

Theorem (1959 Grötzsch)

Planar graphs with girth at least 4 are 3-colorable $\Leftrightarrow (0,0,0)$ -colorable \Rightarrow unbalanced 3-partitionable.

3 and 4

Theorem (1977 Appel–Haken)

Planar graphs are 4-colorable \Rightarrow unbalanced k-partitionable for $k \ge 4$.

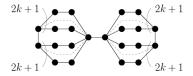
Theorem (1959 Grötzsch)

Planar graphs with girth at least 4 are 3-colorable $\Leftrightarrow (0,0,0)$ -colorable \Rightarrow unbalanced 3-partitionable.

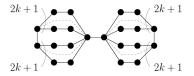
Theorem (C.–Liu–Oum 2016++)

Planar graphs with no C_{ℓ} where $\ell \in X$ are unbalanced 3-partitionable if and only if $3 \in X$ or $4 \in X$.

Not all planar graphs are unbalanced 2-partitionable.



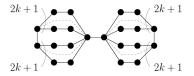
Not all planar graphs are unbalanced 2-partitionable.



Theorem (2014 Borodin-Kostochka)

Planar graphs with girth at least 7 are unbalanced 2-partitionable.

Not all planar graphs are unbalanced 2-partitionable.



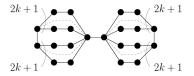
Theorem (2014 Borodin-Kostochka)

Planar graphs with girth at least 7 are unbalanced 2-partitionable.

Theorem (C.-Liu-Oum 2016++)

Planar graphs with no C_{ℓ} where $\ell \in X$ are unbalanced 2-partitionable if and only if $\{3, 4, 6\} \subseteq X$ or $\{\text{odd integers}\} \subseteq X$.

Not all planar graphs are unbalanced 2-partitionable.



Theorem (2014 Borodin-Kostochka)

Planar graphs with girth at least 7 are unbalanced 2-partitionable.

Theorem (C.-Liu-Oum 2016++)

Planar graphs with no C_{ℓ} where $\ell \in X$ are unbalanced 2-partitionable if and only if $\{3, 4, 6\} \subseteq X$ or $\{\text{odd integers}\} \subseteq X$.

No sufficient forbidden cycle condition for unbalanced 1-partitionable!

CONCLUSION:

CONCLUSION: The cycle obstruction for planar graphs to be.....

CONCLUSION: The cycle obstruction for planar graphs to be.....

k	balanced	unbalanced
4 ⁺ -partitionable	Ø	Ø
3-partitionable	Ø	{3 }, {4 }
2-partitionable	{odd integers}, {4}	{odd integers}, {3,4,6}
1-partitionable	does not exist!	does not exist!

CONCLUSION: The cycle obstruction for planar graphs to be.....

k	balanced	unbalanced
4 ⁺ -partitionable	Ø	Ø
3-partitionable	Ø	{3 }, {4 }
2-partitionable	{odd integers}, {4}	{odd integers}, {3,4,6}
1-partitionable	does not exist!	does not exist!

Thank you for your attention!