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A set X of graphs is an obstruction for a graph class C
if a graph G satisfies H € G for all H € X, then G € C.

A graph G is k-colorable if the following is possible:
— each vertex receives a color from {1,... k}
— adjacent vertices receive different colors

Theorem (1941 Brooks)

A graph G is A(G)-colorable if and only if
Cony1 € G when A(G) =2 and Kagy41 € G.

A(G) = 2: Odd cycles are obstructions to be A(G)-colorable!
A(G) # 2: Complete graphs are obstructions to be A(G)-colorable!

Theorem (1977 Appel-Haken)

Planar graph are 4-colorable.

There are no obstructions for planar graphs to be 4-colorable!
What about 3-colorable?!
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Theorem (1959 Grotzsch)

Planar graphs with no Cs are 3-colorable.

(3 is an obstruction for planar graphs to be 3-colorable!

Theorem (1963 Griinbaum, 1974 Aksionov, 1997 Borodin)

Planar graphs with at most three C3 are 3-colorable.

Havel's Question (1961)

Does there exist a constant C such that
planar graphs with pairwise Cs distance at least C are 3-colorable?

Theorem (1980 Aksionov—Mel'nikov, 2009+ Dvofak—Kral'=Thomas)

If C exists, then C > 4. (Is C < 57) C exists! (C < 10'9)

Theorem (2011 Borodin—Glebov, 2014 Dvotak)

Planar graphs with d*> > 2 and no Cs are 3-colorable.
Planar graphs with d* > 26 are 3-colorable.
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if and only if 3 € X or4 € X.
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A set X of integers is a cycle obstruction for a graph class C
if a graph G satisfies C; Z G for all / € X, then G € C.
A class C of graphs is unbalanced k-partitionable,
if 3D > 0 such that all graphs in C are (0,...,0, D)-colorable.

Not all planar graphs are unbalanced 2-partitionable.
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Theorem (2014 Borodin—Kostochka)

Planar graphs with girth at least 7 are unbalanced 2-partitionable.

Theorem (C.—Liu—-Oum 2016++)

Planar graphs with no C;, where ! € X are unbalanced 2-partitionable
if and only if {3,4,6} C X or {odd integers} C X.

No sufficient forbidden cycle condition for unbalanced 1-partitionable!
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CONCLUSION: The cycle obstruction for planar graphs to be.........

k balanced unbalanced

0
{3}, {4}

2-partitionable || {odd integers}, {4} | {odd integers}, {3,4,6}

4" -partitionable

0
3-partitionable 0

1-partitionable does not exist! does not exist!

Thank you for your attention!



