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Choosability of Toroidal Graphs with Forbidden Structures

A list assignment L assigns each vertex v a list L(v) of available colors.

An L-coloring is a function f on V (G ) where
– for each vertex v : f (v) ∈ L(v)
– for each edge xy : f (x) 6= f (y).

A graph G is k-choosable if there is an L-coloring for each L where
– for each vertex v : |L(v)| ≥ k .

The list chromatic number or choosability χl(G ) is the minimum such k.

A graph G is k-colorable if there is an L-coloring where
– for each vertex v : |L(v)| = [k].

The chromatic number χ(G ) is the minimum such k.

χ(G ) ≤ χl(G )
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Choosability of Toroidal Graphs with Forbidden Structures

Theorem (Thomassen 1994, Voigt 1993)

Planar graphs are 5-choosable, and not all planar graphs are 4-choosable.

Theorem (Lam–Xu–Liu 1999, Wang–Lih 2002, 2001, Farzad 2009)

Planar graphs with no k-cycle for some k ∈ {3, 4, 5, 6, 7} are 4-choosable.

Guaranteeing 3-choosability
3 4 5 6 7 8 9 authors year
X X X X Alon–Tarsi 1992
X X Thomassen 1995
X X X Lam–Shiu–Song 2005
X X X Zhang–Xu–Sun 2006
X X X Dvǒrák–Lidický–Škrekovski 2009
X X X Dvǒrák–Lidický–Škrekovski 2010

X X X X X X Borodin 1996
Planar graphs with no 4-, i-, j-, 9-cycles for i , j ∈ {5, 6, 7, 8}.

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?
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Choosability of Toroidal Graphs with Forbidden Structures

For g > 0, let Πg be a surface of Euler genus g and H(g) =
⌊
7+
√
1+24g
2

⌋
.

Theorem (Heawood 1890)

For a graph G on Πg , χ(G ) ≤ H(g).

Heawood conjectured that the max size of a clique on Πg is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, χ(G ) ≤ H(2)− 1 = 6.

Theorem (Ringel, Terry, Welch, Youngs, Gustin, Mayer 1954–1968)

The max size of a clique on Πg is H(g), except for the Klein Bottle.

Theorem (Dirac’s Map Color Theorem)

If G is on Πg , then χ(G ) ≤ H(g) and χ(G ) = H(g) iff KH(g) ⊆ G .

Theorem (Böhme–Mohar–Stiebitz 1999, Král–Škrekovski 2005)

If G is on Πg , then χ`(G ) ≤ H(g) and χ`(G ) = H(g) iff KH(g) ⊆ G .
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Choosability of Toroidal Graphs with Forbidden Structures

Theorem (Böhme–Mohar–Stiebitz 1999)

For a toroidal graph G , χ`(G ) ≤ 7 and χ`(G ) = 7 if and only if K7 ⊆ G .

Theorem (Cai–Wang–Zhu 2010)

For a toroidal graph G:
If C7 6⊆ G , then χ`(G ) ≤ 6 and χ`(G ) = 6 if and only if K6 ⊆ G .
If C6 6⊆ G , then χ`(G ) ≤ 5.
If Ck 6⊆ G , then χ`(G ) ≤ 4, for k ∈ {3, 4, 5}.

Conjecture (Cai–Wang–Zhu 2010)

For a toroidal graph G : if C6 6⊆ G and K5 6⊆ G , then χ`(G ) ≤ 4. FALSE!

Embeddable on any surface, except the plane and the projective plane!
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Conjecture (Cai–Wang–Zhu 2010)

For a toroidal graph G : if C6 6⊆ G and K5 6⊆ G , then χ`(G ) ≤ 4. FALSE!

Embeddable on any surface, except the plane and the projective plane!

Question (Kostochka, Zhu 2013)

For a projective plane graph G : if C6 6⊆ G and K5 6⊆ G , then χ`(G ) ≤ 4?
For a toroidal graph G : if C6 6⊆ G and K−5 6⊆ G , then χ`(G ) ≤ 4?

Theorem (C. 2014+)
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Theorem (C. 2014+)

For a toroidal graph G : if C6 6⊆ G and K−5 6⊆ G , then χ`(G ) ≤ 4.

Main Ideas of the Proof:

Discharging.∑
v

(d(v)− 6) +
∑
f

(2 · l(f )− 6) = −6v + 6e − 6f ≤ 0

Difficulty with toroidal graphs.
– sum of final charge must be positive
– more reducible configurations

Difficulty with forbidding 6-cycles.
– No 6-face? No two 4-faces sharing an edge?
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Choosability of Toroidal Graphs with Forbidden Structures

Open Problems:

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?

Theorem

A k-colorable planar graph is not always k-choosable, for k ∈ {2, 3, 4}.
A 6-colorable toroidal graph is always 6-choosable.

Question (Cai–Wang–Zhu 2010)

Is there a toroidal graph that is 5-colorable, but not 5-choosable?

Theorem (Thomassen 1995, 1994, Cai–Wang–Zhu 2010)

Planar graphs with girth 5 are 3-choosable.
Toroidal graphs with girth 5 are 3-colorable.
Toroidal graphs with girth 6 are 3-choosable.

Conjecture (Cai–Wang–Zhu 2010)

Toroidal graphs with girth 5 are 3-choosable.
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Thank you for your attention!


