Choosability of Toroidal Graphs with Forbidden Structures

ILKYOO CHOI¹

Korea Advanced Institute of Science and Technology, South Korea

August 6, 2014

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k].

The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex v: $f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

Theorem (Thomassen 1994, Voigt 1993)

Planar graphs are 5-choosable, and not all planar graphs are 4-choosable.

Theorem (Lam-Xu-Liu 1999, Wang-Lih 2002, 2001, Farzad 2009)

Planar graphs with no k-cycle for some $k \in \{3, 4, 5, 6, 7\}$ are 4-choosable.

Theorem (Thomassen 1994, Voigt 1993)

Planar graphs are 5-choosable, and not all planar graphs are 4-choosable.

Theorem (Lam-Xu-Liu 1999, Wang-Lih 2002, 2001, Farzad 2009)

Planar graphs with no k-cycle for some $k \in \{3, 4, 5, 6, 7\}$ are 4-choosable.

3	4	5	6	7	8	9	authors	year
X		Х		Х		Х	Alon–Tarsi	1992
X	Х						Thomassen	1995
X		Х	Х				Lam–Shiu–Song	2005
X					Х	Х	Zhang–Xu–Sun	2006
X				Х	Х		Dvořák–Lidický–Škrekovski	2009
X			Х	Х			Dvořák–Lidický–Škrekovski	2010
	Х	Х	Х	Х	Х	Х	Borodin	1996

Guaranteeing 3-choosability

Planar graphs with no 4-, *i*-, *j*-, 9-cycles for $i, j \in \{5, 6, 7, 8\}$.

Theorem (Thomassen 1994, Voigt 1993)

Planar graphs are 5-choosable, and not all planar graphs are 4-choosable.

Theorem (Lam–Xu–Liu 1999, Wang–Lih 2002, 2001, Farzad 2009)

Planar graphs with no k-cycle for some $k \in \{3, 4, 5, 6, 7\}$ are 4-choosable.

-								
3	4	5	6	7	8	9	authors	year
Х		Х		Х		Х	Alon–Tarsi	1992
X	Х						Thomassen	1995
X		Х	Х				Lam–Shiu–Song	2005
X					Х	Х	Zhang–Xu–Sun	2006
X				Х	Х		Dvořák–Lidický–Škrekovski	2009
X			Х	Х			Dvořák–Lidický–Škrekovski	2010
	Х	Х	Х	Х	Х	Х	Borodin	1996

Guaranteeing 3-choosability

Planar graphs with no 4-, *i*-, *j*-, 9-cycles for $i, j \in \{5, 6, 7, 8\}$.

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?

For
$$g > 0$$
, let \prod_{g} be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For
$$g > 0$$
, let \prod_{g} be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on Π_g , $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on Π_{g} , $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on Π_{g} , $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on Π_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Partial results on Heawood's conjecture ..

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on Π_{g} , $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on Π_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Partial results on Heawood's conjecture..

- 1954 Ringel

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7+\sqrt{2}}{2} \right\rfloor$

For a graph G on Π_{g} , $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Partial results on Heawood's conjecture ..

- 1954 Ringel
- 1961 Ringel
- 1963 Terry, Welch, Youngs
- 1964 Gustin, Youngs
- 1965 Gustin
- 1966 Youngs
- 1967 Ringel, Youngs
- 1967 Mayer

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7+\sqrt{2}}{2} \right\rfloor$

For a graph G on Π_{g} , $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Partial results on Heawood's conjecture ..

- 1954 Ringel
- 1961 Ringel
- 1963 Terry, Welch, Youngs
- 1964 Gustin, Youngs
- 1965 Gustin
- 1966 Youngs
- 1967 Ringel, Youngs
- 1967 Mayer
- 1968 Ringel-Youngs.. complete!

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on Π_{g} , $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Theorem (Ringel, Terry, Welch, Youngs, Gustin, Mayer 1954–1968)

The max size of a clique on Π_g is H(g), except for the Klein Bottle.

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on
$$\Pi_g$$
, $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Theorem (Ringel, Terry, Welch, Youngs, Gustin, Mayer 1954–1968)

The max size of a clique on Π_g is H(g), except for the Klein Bottle.

Theorem (Dirac's Map Color Theorem)

If G is on Π_g , then $\chi(G) \leq H(g)$ and $\chi(G) = H(g)$ iff $K_{H(g)} \subseteq G$.

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7+\sqrt{2}}{2} \right\rfloor$

For a graph G on
$$\Pi_g$$
, $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Theorem (Ringel, Terry, Welch, Youngs, Gustin, Mayer 1954–1968)

The max size of a clique on Π_g is H(g), except for the Klein Bottle.

Theorem (Dirac's Map Color Theorem)

If G is on Π_g , then $\chi(G) \leq H(g)$ and $\chi(G) = H(g)$ iff $K_{H(g)} \subseteq G$.

Theorem (Dirac 1956, 1957, Albertson-Hutchinson 1979)

If $\chi(G) = H(g)$, then $K_{H(g)} \subseteq G$.

For
$$g > 0$$
, let \prod_g be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on
$$\Pi_g$$
, $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Theorem (Ringel, Terry, Welch, Youngs, Gustin, Mayer 1954–1968)

The max size of a clique on Π_g is H(g), except for the Klein Bottle.

Theorem (Dirac's Map Color Theorem)

If G is on Π_g , then $\chi(G) \leq H(g)$ and $\chi(G) = H(g)$ iff $K_{H(g)} \subseteq G$.

For
$$g > 0$$
, let \prod_{g} be a surface of Euler genus g and $H(g) = \left\lfloor \frac{7 + \sqrt{1 + 24g}}{2} \right\rfloor$

For a graph G on
$$\Pi_{g}$$
, $\chi(G) \leq H(g)$.

Heawood conjectured that the max size of a clique on \prod_g is H(g).

Theorem (Franklin 1934)

For a graph G on the Klein Bottle, $\chi(G) \leq H(2) - 1 = 6$.

Theorem (Ringel, Terry, Welch, Youngs, Gustin, Mayer 1954–1968)

The max size of a clique on Π_g is H(g), except for the Klein Bottle.

Theorem (Dirac's Map Color Theorem)

If G is on Π_g , then $\chi(G) \leq H(g)$ and $\chi(G) = H(g)$ iff $K_{H(g)} \subseteq G$.

Theorem (Böhme–Mohar–Stiebitz 1999, Král–Škrekovski 2005)

If G is on Π_g , then $\chi_\ell(G) \leq H(g)$ and $\chi_\ell(G) = H(g)$ iff $K_{H(g)} \subseteq G$.

For a toroidal graph G, $\chi_{\ell}(G) \leq 7$ and $\chi_{\ell}(G) = 7$ if and only if $K_7 \subseteq G$.

For a toroidal graph G, $\chi_{\ell}(G) \leq 7$ and $\chi_{\ell}(G) = 7$ if and only if $K_7 \subseteq G$.

Theorem (Cai–Wang–Zhu 2010)

For a toroidal graph G: If $C_7 \not\subseteq G$, then $\chi_{\ell}(G) \leq 6$ and $\chi_{\ell}(G) = 6$ if and only if $K_6 \subseteq G$. If $C_6 \not\subseteq G$, then $\chi_{\ell}(G) \leq 5$. If $C_k \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$, for $k \in \{3,4,5\}$.

For a toroidal graph G, $\chi_{\ell}(G) \leq 7$ and $\chi_{\ell}(G) = 7$ if and only if $K_7 \subseteq G$.

Theorem (Cai–Wang–Zhu 2010)

For a toroidal graph G: If $C_7 \not\subseteq G$, then $\chi_{\ell}(G) \leq 6$ and $\chi_{\ell}(G) = 6$ if and only if $K_6 \subseteq G$. If $C_6 \not\subseteq G$, then $\chi_{\ell}(G) \leq 5$. If $C_k \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$, for $k \in \{3,4,5\}$.

Conjecture (Cai-Wang-Zhu 2010)

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

For a toroidal graph G, $\chi_{\ell}(G) \leq 7$ and $\chi_{\ell}(G) = 7$ if and only if $K_7 \subseteq G$.

Theorem (Cai–Wang–Zhu 2010)

For a toroidal graph G: If $C_7 \not\subseteq G$, then $\chi_{\ell}(G) \leq 6$ and $\chi_{\ell}(G) = 6$ if and only if $K_6 \subseteq G$. If $C_6 \not\subseteq G$, then $\chi_{\ell}(G) \leq 5$. If $C_k \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$, for $k \in \{3,4,5\}$.

Conjecture (Cai–Wang–Zhu 2010)

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$. FALSE!

For a toroidal graph G, $\chi_{\ell}(G) \leq 7$ and $\chi_{\ell}(G) = 7$ if and only if $K_7 \subseteq G$.

Theorem (Cai–Wang–Zhu 2010)

For a toroidal graph G: If $C_7 \not\subseteq G$, then $\chi_{\ell}(G) \leq 6$ and $\chi_{\ell}(G) = 6$ if and only if $K_6 \subseteq G$. If $C_6 \not\subseteq G$, then $\chi_{\ell}(G) \leq 5$. If $C_k \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$, for $k \in \{3,4,5\}$.

Conjecture (Cai–Wang–Zhu 2010)

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$. FALSE!

For a toroidal graph G, $\chi_{\ell}(G) \leq 7$ and $\chi_{\ell}(G) = 7$ if and only if $K_7 \subseteq G$.

Theorem (Cai–Wang–Zhu 2010)

For a toroidal graph G: If $C_7 \not\subseteq G$, then $\chi_{\ell}(G) \leq 6$ and $\chi_{\ell}(G) = 6$ if and only if $K_6 \subseteq G$. If $C_6 \not\subseteq G$, then $\chi_{\ell}(G) \leq 5$. If $C_k \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$, for $k \in \{3,4,5\}$.

Conjecture (Cai–Wang–Zhu 2010)

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$. FALSE!

Embeddable on any surface, except the plane and the projective plane!

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$. FALSE!

Embeddable on any surface, except the plane and the projective plane!

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$. FALSE!

Embeddable on any surface, except the plane and the projective plane!

Question (Kostochka, Zhu 2013)

For a projective plane graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \le 4$? For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \le 4$?

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$. FALSE!

Embeddable on any surface, except the plane and the projective plane!

Question (Kostochka, Zhu 2013)

For a projective plane graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \le 4$? For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \le 4$?

Theorem (C. 2014+)

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$. FALSE!

Embeddable on any surface, except the plane and the projective plane!

Question (Kostochka, Zhu 2013)

For a projective plane graph G: if $C_6 \not\subseteq G$ and $K_5 \not\subseteq G$, then $\chi_{\ell}(G) \le 4$? For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \le 4$?

Theorem (C. 2014+)

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Must forbid both structures!

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

$$\sum_{v} (d(v) - 6) + \sum_{f} (2 \cdot l(f) - 6) = -6v + 6e - 6f \le 0$$

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

Discharging.

$$\sum_{v} (d(v) - 6) + \sum_{f} (2 \cdot l(f) - 6) = -6v + 6e - 6f \le 0$$

Difficulty with toroidal graphs.

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

Discharging.

$$\sum_{v} (d(v) - 6) + \sum_{f} (2 \cdot l(f) - 6) = -6v + 6e - 6f \le 0$$

Difficulty with toroidal graphs.

- sum of final charge must be positive
- more reducible configurations

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

$$\sum_{v} (d(v) - 6) + \sum_{f} (2 \cdot l(f) - 6) = -6v + 6e - 6f \le 0$$

- Difficulty with toroidal graphs.
 - sum of final charge must be positive
 - more reducible configurations
- Difficulty with forbidding 6-cycles.

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

$$\sum_{v} (d(v) - 6) + \sum_{f} (2 \cdot l(f) - 6) = -6v + 6e - 6f \le 0$$

- Difficulty with toroidal graphs.
 - sum of final charge must be positive
 - more reducible configurations
- Difficulty with forbidding 6-cycles.
 - No 6-face? No two 4-faces sharing an edge?

For a toroidal graph G: if $C_6 \not\subseteq G$ and $K_5^- \not\subseteq G$, then $\chi_{\ell}(G) \leq 4$.

Main Ideas of the Proof:

$$\sum_{v} (d(v) - 6) + \sum_{f} (2 \cdot l(f) - 6) = -6v + 6e - 6f \le 0$$

- Difficulty with toroidal graphs.
 - sum of final charge must be positive
 - more reducible configurations
- Difficulty with forbidding 6-cycles.
 - No 6-face? No two 4-faces sharing an edge?

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?

Theorem

A *k*-colorable planar graph is not always *k*-choosable, for $k \in \{2, 3, 4\}$. A 6-colorable toroidal graph is always 6-choosable.

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?

Theorem

A *k*-colorable planar graph is not always *k*-choosable, for $k \in \{2, 3, 4\}$. A 6-colorable toroidal graph is always 6-choosable.

Question (Cai-Wang-Zhu 2010)

Is there a toroidal graph that is 5-colorable, but not 5-choosable?

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?

Theorem

A *k*-colorable planar graph is not always *k*-choosable, for $k \in \{2, 3, 4\}$. A 6-colorable toroidal graph is always 6-choosable.

Question (Cai-Wang-Zhu 2010)

Is there a toroidal graph that is 5-colorable, but not 5-choosable?

Theorem (Thomassen 1995, 1994, Cai–Wang–Zhu 2010)

Planar graphs with girth 5 are 3-choosable. Toroidal graphs with girth 5 are 3-colorable. Toroidal graphs with girth 6 are 3-choosable.

Question (Borodin 1996)

Are planar graphs without cycles of length 4 to 8 indeed 3-choosable?

Theorem

A *k*-colorable planar graph is not always *k*-choosable, for $k \in \{2, 3, 4\}$. A 6-colorable toroidal graph is always 6-choosable.

Question (Cai-Wang-Zhu 2010)

Is there a toroidal graph that is 5-colorable, but not 5-choosable?

Theorem (Thomassen 1995, 1994, Cai–Wang–Zhu 2010)

Planar graphs with girth 5 are 3-choosable. Toroidal graphs with girth 5 are 3-colorable. Toroidal graphs with girth 6 are 3-choosable.

Conjecture (Cai–Wang–Zhu 2010)

Toroidal graphs with girth 5 are 3-choosable.

Choosability of Toroidal Graphs with Forbidden Structures

Thank you for your attention!