On Choosability with Separation of Planar Graphs with Forbidden Cycles

ILKYOO CHOI, Bernard Lidický, Derrick Stolee

University of Illinois at Urbana-Champaign, USA

April 6, 2013

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

A graph G is (k, d)-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \le d$.

Fact

Every graph is (1,0)-choosable. Every (k,d)-choosable graph is (k',d')-choosable for $k' \ge k$ and $d' \le d$.

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$.

A graph G is (k, d)-choosable if there is an L-coloring for each L where

- for each vertex v: $|L(v)| \ge k$
- for each edge xy: $|L(x) \cap L(y)| \leq d$.

Fact

Every graph is (1,0)-choosable. Every (k,d)-choosable graph is (k',d')-choosable for $k' \ge k$ and $d' \le d$.

For each $k < \chi_l(G)$, there is a threshold *d* where *G* is

-(k, d)-choosable

- but not (k, d+1)-choosable.

Let $\chi_l(G, d)$ be the minimum k where G is (k, d)-choosable.

$$\lim_{n\to\infty}\frac{\chi_l(K_n,1)}{\sqrt{n}}=1$$

$$\lim_{n\to\infty}\frac{\chi_l(K_n,1)}{\sqrt{n}}=1$$

Theorem (Füredi-Kostochka-Kumbhat 2013+)

$$\lim_{n\to\infty}\frac{\chi_l(K_n,d)}{\sqrt{dn}}=1$$

$$\lim_{n\to\infty}\frac{\chi_l(K_n,1)}{\sqrt{n}}=1$$

Theorem (Füredi–Kostochka–Kumbhat 2013+)

$$\lim_{n\to\infty}\frac{\chi_l(K_n,d)}{\sqrt{dn}}=1$$

Conjecture (Füredi–Kostochka–Kumbhat 2013+)

For an n-vertex graph G,

$$\chi_I(G, \mathbf{d}) \leq \chi_I(K_n, \mathbf{d})$$

Notes	k = 3	d	k = 4	Notes
		0		
		1		
		2		
		3		
	_	4		

Notes	k=3	d	k = 4	Notes
	Yes.	0	Yes.	
		1		
		2		
		3		
	_	4		

Notes	k = 3	d	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
		1		
		2		
		3		
	—	4		

Notes	k = 3	d	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
		1		
		2		
		3		
	_	4	No.	

Notes	k = 3	<u>d</u>	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
		1		
		2		
		3	No.	
	_	4	No.	

Every planar graph is 5-choosable.

Notes	k = 3	d	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
		1	Yes.	K–T–V
		2		
		3	No.	
	-	4	No.	

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is 5-choosable.

Notes	k = 3	<u>d</u>	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
		1	Yes.	K–T–V,Škrekovski (2001)
		2		
		3	No.	
	_	4	No.	

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is 5-choosable.

Notes	k = 3	d	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
		1	Yes.	K–T–V,Škrekovski (2001)
		2		
	No.	3	No.	
	-	4	No.	

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is 5-choosable.

Notes	k = 3	d	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
		1	Yes.	K–T–V,Škrekovski (2001)
	No.	2		
	No.	3	No.	
	-	4	No.	

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is 5-choosable.

Notes	k = 3	d	k = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
Yes for no <u>3</u> -cycles		1	Yes.	K–T–V,Škrekovski (2001)
	No.	2		
	No.	3	No.	
	_	4	No.	

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is (4, 1)-choosable.

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is 5-choosable.

Notes	k = 3	d	<i>k</i> = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
Yes for no <u>3</u> -cycles	?	1	Yes.	K–T–V,Škrekovski (2001)
	No.	2		
	No.	3	No.	
	-	4	No.	

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is (4, 1)-choosable.

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is 5-choosable.

Notes	k = 3	d	k = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
Yes for no <u>3</u> -cycles	?	1	Yes.	K–T–V,Škrekovski (2001)
	No.	2	?	
	No.	3	No.	
	-	4	No.	

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is (4, 1)-choosable.

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph is 5-choosable.

Notes	k = 3	d	k = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
Yes for no <u>3</u> -cycles	?	1	Yes.	K–T–V,Škrekovski (2001)
	No.	2	?	
	No.	3	No.	
	-	4	No.	

Theorem (C.–Lidický–Stolee 2013+)

Every planar graph with no 4-cycles is (3, 1)-choosable.

Theorem (C.–Lidický–Stolee 2013+)

Guaranteeing 3-choosability

Planar graphs with no 4-, *i*-, *j*-, 9-cycles for $i, j \in \{5, 6, 7, 8\}$.

3	4	5	6	7	8	9	authors	year
Х		Х		Х		Х	Alon–Tarsi	1992
Х	Х						Thomassen	1995
Х		Х	Х				Lam–Shiu–Song	2005
X					Х	Х	Zhang–Xu–Sun	2006
X				Х	Х		Dvořák–Lidický–Škrekovski	2009
X			Х	Х			Dvořák–Lidický–Škrekovski	2010

Theorem (C.–Lidický–Stolee 2013+)

Every planar graph with no 4-cycles is (3, 1)-choosable.

Theorem (C.–Lidický–Stolee 2013+)

Every planar graph with no 4-cycles is (3, 1)-choosable.

Theorem (C.–Lidický–Stolee 2013+)

Every planar graph with no 3-cycles is (3, 1)-choosable.

Theorem (C.–Lidický–Stolee 2013+)

Every planar graph with no 4-cycles is (3, 1)-choosable.

Theorem (C.–Lidický–Stolee 2013+)

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \geq 3$$
 for $v \in V(G) \setminus V(F)$,

(ii)
$$|L(v)| \ge 2$$
 for $v \in V(F) \setminus \{p,q\}$,

(iii)
$$|L(v)|=1$$
 for $v\in\{p,q\}$ and $L(p)
eq L(q),$

(iv) no two vertices with lists of size two are adjacent,

$$(v) |L(x) \cap L(y)| \leq 1$$
 for each edge xy.

Theorem (Kratochvíl–Tuza–Voigt 1998)

Every planar graph with no 3-cycles is (3, 1)-choosable.

Theorem (C.–Lidický–Stolee 2013+)

Every planar graph with no 4-cycles is (3, 1)-choosable.

Theorem (C.–Lidický–Stolee 2013+)

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

Proof. First remove all unnecessary edges.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p, q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p, q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy .

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p, q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p, q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy .

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p, q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p, q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy .

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p, q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p, q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p, q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p, q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy .

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent

$$(v) |L(x) \cap L(y)| \leq 1$$
 for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p, q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p, q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent

$$(v) |L(x) \cap L(y)| \leq 1$$
 for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,

$$(v) |L(x) \cap L(y)| \leq 1$$
 for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,

$$(v) |L(x) \cap L(y)| \leq 1$$
 for each edge xy.

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p, q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p, q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

$$\{a, b\}$$

$$\{a, b\}$$

$$\{a, y\}$$

$$\{b\}$$

$$\{a, y\}$$

$$\{b\}$$

If G is a plane graph with no 3-cycles and outer face F where $pq \in E(F)$, then G is L-colorable if L is a list assignment such that:

(i)
$$|L(v)| \ge 3$$
 for $v \in V(G) \setminus V(F)$,
(ii) $|L(v)| \ge 2$ for $v \in V(F) \setminus \{p,q\}$,
(iii) $|L(v)| = 1$ for $v \in \{p,q\}$ and $L(p) \ne L(q)$,
(iv) no two vertices with lists of size two are adjacent,
(v) $|L(x) \cap L(y)| \le 1$ for each edge xy.

$$\{a,b\}$$

$$\{a,b\}$$

$$\{a,y\}$$

$$\{a,y\}$$

$$\{a,z,b\}$$

$$\{b\}$$

$$\{a,y\}$$

$$\{a,z,b\}$$

$$\{b,x\}$$

Notes	k = 3	d	k = 4	Notes
Trivial	Yes.	0	Yes.	Trivial
Yes for no 3-cycles				
Yes for no 4-cycles	?	1	Yes.	K–T–V, Škrekovski
Yes for no 5-, 6-cycles				
	No.	2	?	
	No.	3	No.	
	_	4	No.	

Question (Škrekovski 2001)

Are all planar graphs (3, 1)-choosable?

Question (Kratochvíl–Tuza–Voigt 1998)

Are all planar graphs (4, 2)-choosable?

Thank you for your attention!