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— for each edge xy: f(x) # f(y).
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Every graph is (1, 0)-choosable.
Every (k, d)-choosable graph is (k’, d")-choosable for k' > k and d’ < d.

For each k < x/(G), there is a threshold d where G is
— (k, d)-choosable
— but not (k, d + 1)-choosable.
Let x/(G, d) be the minimum k where G is (k, d)-choosable.
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Conjecture (Firedi-Kostochka—Kumbhat 2013+)

For an n-vertex graph G,

X/(G’ d) < X/(Km d)
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Guaranteeing 3-choosability

Planar graphs with no 4-, i-, j-, 9-cycles for i, € {5,6,7,8}.

3 4 5 6 7 8 9 authors year
X X X X | Alon—Tarsi 1992
X X Thomassen 1995
X X X Lam—Shiu-Song 2005
X X X | Zhang—Xu-Sun 2006
X X X Dvotak-Lidicky—Skrekovski | 2009
X X X Dvotak-Lidicky—-Skrekovski | 2010

Theorem (C.—Lidicky—Stolee 2013+)
Every planar graph with no 4-cycles is (3, 1)-choosable.

Theorem (C.—-Lidicky—Stolee 2013+)
Every planar graph with no 5-, 6-cycles is (3, 1)-choosable.
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(v) |L(x) N L(y)| < 1 for each edge xy.
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(iv) no two vertices with lists of size two are adjacent,
)

(v

Proof. First remove all unnecessary edges. There are no chords.
The neighbors of v must be independent. There must be a good vertex.

|L(x) N L(y)| <1 for each edge xy.
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Theorem (C.—Lidicky—Stolee 2013+)

Every planar graph with no 4-cycles is (3, 1)-choosable.
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Theorem (C.—Lidicky—Stolee 2013+)

Every planar graph with no 5-, 6-cycles is (3, 1)-choosable.
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Notes k=3 | d| k=4 Notes

Trivial Yes. 0 Yes. Trivial
Yes for no 3-cycles
Yes for no 4-cycles ? 1 Yes. K=T-V, Skrekovski
Yes for no 5-, 6-cycles
No. 2 ?
No. 3 No.
— 4 No.

Question (Skrekovski 2001)
Are all planar graphs (3, 1)-choosable?

Question (Kratochvil-Tuza—Voigt 1998)
Are all planar graphs (4,2)-choosable?
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Thank you for your attention!



