The List Version of the Borodin–Kostochka Conjecture for Graphs with Large Max Degree

ILKYOO CHOI¹, Hal Kierstead², Landon Rabern², Bruce Reed³

University of Illinois at Urbana-Champaign, USA

Arizona State University, USA

McGill University, Canada

April 27, 2013

A list assignment L assigns each vertex v a list L(v) of available colors.

An *L*-coloring is a function f on V(G) where

- for each vertex v: $f(v) \in L(v)$
- for each edge xy: $f(x) \neq f(y)$.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k].

The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

An *L*-coloring is a function f on V(G) where

- for each vertex $v: f(v) \in L(v)$

- for each edge xy: $f(x) \neq f(y)$.

A graph G is k-choosable if there is an L-coloring for each L where – for each vertex v: $|L(v)| \ge k$.

The list chromatic number or choosability $\chi_l(G)$ is the minimum such k.

A graph G is k-colorable if there is an L-coloring where – for each vertex v: |L(v)| = [k]. The chromatic number $\chi(G)$ is the minimum such k.

For any graph G,

 $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$

For any graph G,

 $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$

Where does $\chi(G)$ stand?

For any graph G,

$$\omega(G) \leq \chi(G) \leq \Delta(G) + 1$$

Where does $\chi(G)$ stand?

Conjecture (Reed 1998)

For any graph G,

$$\chi(G) \leq \left\lceil \frac{\omega(G) + \Delta(G) + 1}{2} \right\rceil$$

$$\frac{2+4+1}{2} < 4 \leq \left\lceil \frac{2+4+1}{2} \right\rceil$$

For any graph G,

 $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$

Where does $\chi(G)$ stand?

For any graph G,

 $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$

Where does $\chi(G)$ stand? Where does $\chi_l(G)$ stand?

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Theorem (Brooks 1941)

Given a graph G with $\Delta(G) \geq 3$,

if
$$\omega(G) \leq \Delta(G)$$
, then $\chi(G) \leq \Delta(G)$

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with $\Delta(G) \geq 3$,

if $\omega(G) \leq \Delta(G)$, then $\chi(G) \leq \chi_{l}(G) \leq \Delta(G)$

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with $\Delta(G) \geq 3$,

if
$$\omega(G) \leq \Delta(G)$$
, then $\chi(G) \leq \chi_I(G) \leq \Delta(G)$

Can this be extended?

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with $\Delta(G) \geq 3$,

if
$$\omega(G) \leq \Delta(G)$$
, then $\chi(G) \leq \chi_{l}(G) \leq \Delta(G)$

Conjecture (Borodin-Kostochka 1977)

Given a graph G with $\Delta(G) \geq 9$,

if
$$\omega(G) \leq \Delta(G) - 1$$
, then $\chi(G) \leq \chi_{l}(G) \leq \Delta(G) - 1$

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with $\Delta(G) \geq 3$,

if
$$\omega(G) \leq \Delta(G)$$
, then $\chi(G) \leq \chi_{l}(G) \leq \Delta(G)$

Conjecture (Borodin–Kostochka 1977)

Given a graph G with $\Delta(G) \geq 9$,

if
$$\omega(G) \leq \Delta(G) - 1$$
, then $\chi(G) \leq \chi_l(G) \leq \Delta(G) - 1$

If true, then sharp. Blow each vertex of a 5-cycle into a 3-cycle.

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with $\Delta(G) \geq 3$,

if
$$\omega(G) \leq \Delta(G)$$
, then $\chi(G) \leq \chi_{l}(G) \leq \Delta(G)$

Conjecture (Borodin-Kostochka 1977)

Given a graph G with $\Delta(G) \geq 9$,

if
$$\omega(G) \leq \Delta(G) - 1$$
, then $\chi(G) \leq \Delta(G) - 1$

Fact

For any graph G,

$$\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \Delta(G) + 1$$

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with $\Delta(G) \geq 3$,

if
$$\omega(G) \leq \Delta(G)$$
, then $\chi(G) \leq \chi_{l}(G) \leq \Delta(G)$

Conjecture (Borodin-Kostochka 1977)

Given a graph G with $\Delta(G) \geq 9$,

if
$$\omega(G) \leq \Delta(G) - 1$$
, then $\chi(G) \leq \Delta(G) - 1$

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Conjecture (Borodin-Kostochka 1977)

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Theorem (Kostochka 1980)

Every graph G satisfying $\chi(G) \ge \Delta(G)$

contains a $K_{\Delta(G)-28}$.

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Theorem (Kostochka 1980, Mozhan 1983)

Every graph G satisfying $\chi(G) \geq \Delta(G)$

contains a $K_{\Delta(G)-28}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 31$ contains a $K_{\Delta(G)-3}$.

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Theorem (Kostochka 1980, Mozhan 1983, Reed 1999)

Every graph G satisfying $\chi(G) \ge \Delta(G)$ contains a $K_{\Delta(G)-28}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 31$ contains a $K_{\Delta(G)-3}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 10^{14}$ contains a $K_{\Delta(G)}$.

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Theorem (Kostochka 1980, Mozhan 1983, Reed 1999)

Every graph G satisfying $\chi(G) \ge \Delta(G)$ contains a $K_{\Delta(G)-28}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 31$ contains a $K_{\Delta(G)-3}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 10^{14}$ contains a $K_{\Delta(G)}$.

Reed claims the theorem is still true for $\Delta(G) \ge 10^3$, but maybe not 10^2 .

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Theorem (Kostochka 1980, Mozhan 1983, Reed 1999)

Every graph G satisfying $\chi(G) \ge \Delta(G)$ contains a $K_{\Delta(G)-28}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 31$ contains a $K_{\Delta(G)-3}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 10^{14}$ contains a $K_{\Delta(G)}$.

Reed claims the theorem is still true for $\Delta(G) \ge 10^3$, but maybe not 10^2 .

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Every graph G satisfying $\chi_{l}(G) \geq \Delta(G) \geq 10^{20}$ contains a $K_{\Delta(G)}$.

Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 9$ contains a $K_{\Delta(G)}$.

Theorem (Kostochka 1980, Mozhan 1983, Reed 1999)

Every graph G satisfying $\chi(G) \ge \Delta(G)$ contains a $K_{\Delta(G)-28}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 31$ contains a $K_{\Delta(G)-3}$. Every graph G satisfying $\chi(G) \ge \Delta(G) \ge 10^{14}$ contains a $K_{\Delta(G)}$.

Reed claims the theorem is still true for $\Delta(G) \ge 10^3$, but maybe not 10^2 .

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Every graph G satisfying $\chi_{l}(G) \geq \Delta(G) \geq 10^{20}$ contains a $K_{\Delta(G)}$.

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if $\omega(G) \leq \Delta(G) - 1$, then $\chi_l(G) \leq \Delta(G) - 1$

Theorem (Vizing 1976)

Given a graph G with sufficiently large $\Delta(G)$,

if
$$\omega(G) \leq \Delta(G) - 0$$
, then $\chi_l(G) \leq \Delta(G) - 0$

Theorem (Vizing 1976, C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with sufficiently large $\Delta(G)$,

if
$$\omega(G) \leq \Delta(G) - 0$$
, then $\chi_l(G) \leq \Delta(G) - 0$
if $\omega(G) \leq \Delta(G) - 1$, then $\chi_l(G) \leq \Delta(G) - 1$

Theorem (Vizing 1976, C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with sufficiently large $\Delta(G)$,

if
$$\omega(G) \leq \Delta(G) - 0$$
, then $\chi_l(G) \leq \Delta(G) - 0$
if $\omega(G) \leq \Delta(G) - 1$, then $\chi_l(G) \leq \Delta(G) - 1$

if
$$\omega(G) \leq \Delta(G) - k$$
, then $\chi_l(G) \leq \Delta(G) - k$?

Theorem (Vizing 1976, C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with sufficiently large $\Delta(G)$,

if
$$\omega(G) \leq \Delta(G) - 0$$
, then $\chi_l(G) \leq \Delta(G) - 0$
if $\omega(G) \leq \Delta(G) - 1$, then $\chi_l(G) \leq \Delta(G) - 1$

if
$$\omega(G) \leq \Delta(G) - k$$
, then $\chi_l(G) \leq \Delta(G) - k$?

Not true even for the ordinary chromatic number when k = 2.

Theorem (Vizing 1976, C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with sufficiently large $\Delta(G)$,

if
$$\omega(G) \leq \Delta(G) - 0$$
, then $\chi_l(G) \leq \Delta(G) - 0$
if $\omega(G) \leq \Delta(G) - 1$, then $\chi_l(G) \leq \Delta(G) - 1$

if
$$\omega(G) \leq \Delta(G) - k$$
, then $\chi_l(G) \leq \Delta(G) - k$?

Not true even for the ordinary chromatic number when k = 2.

Uutline of the proof and Main Ideas

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if $\omega(G) \leq \Delta(G) - 1$, then $\chi_l(G) \leq \Delta(G) - 1$

Untline of the proof and Main Ideas

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Untline of the proof and Main Ideas

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **1** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **1** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **1** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **1** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **1** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Theorem (C.-Kierstead-Rabern-Reed 2013+)

Given a graph G with $\Delta(G) \ge 10^{20}$,

if
$$\omega(G) \leq {oldsymbol \Delta}(G) - 1$$
, then $\chi_l(G) \leq {oldsymbol \Delta}(G) - 1$

Proof Sketch: Take a counterexample *G* with the minimum number of vertices and a list assignment *L* where $|L(v)| = \Delta(G) - 1$ for each vertex *v*.

Apply the Naive Coloring Procedure, which is the following:

- **I** Randomly choose a color in L(v) to use on v.
- 2 Remove any conflicts.

Observation

Safe Vertex

Given a partial coloring of G, an uncolored vertex v is *safe* if one of the following occurs:

- a color is repeated three times in N(v);
- two colors are repeated twice in N(v);
- a color is repeated twice in N(v) and a color not in L(v) is in N(v);

• two colors not in L(v) appear in N(v).

Note that a vertex with two uncolored neighbors can always be colored.

└─ Outline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones.

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Untline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

Untline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

Untline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

Untline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

Untline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

If C is a clique of G, then there exists $C' \subset C$ such that |C'| = |C| - 1and $|L(x) \cap L(y)| \ge |C| - 3$ for all $x, y \in C'$.

Core:

Untline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

Untline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

└─ Outline of the proof and Main Ideas

Cliques are bad, especially the big (size at least $\frac{3\Delta}{4}$) ones. All but maybe one vertex of a big clique have many colors in common.

Lemma

- Each vertex in a big clique C has at most one neighbor outside of C with more than 4 neighbors in C.
- There is at most one vertex outside of a (△ − 1)-clique with more than 4 neighbors in the clique.
- Each special color appears in at most 5 lists.

Decompose *G* "nicely" so we can analyze in smaller pieces.

Lovász Local Lemma

Consider a set of (bad) events \mathcal{E} where for each $E \in \mathcal{E}$:

• $Pr(E) \leq p$

• *E* is mutually independent to a set of all but at most d other events.

If $ep(d + 1) \le 1$, then with positive probability, no event in \mathcal{E} occurs.

Color randomly to obtain a good (enough) partial coloring.

Azuma's Inequality

Let X be a random variable determined by n trials T_1, \ldots, T_n . For each i and any two possible outcomes, if the following holds: $|E(X|T_1 = t_1, \ldots, T_i = t_i) - E(X|T_1 = t_1, \ldots, T_i = t'_i)| \le c_i$, then $Pr(|X - E(X)| > t) \le 2e^{-t^2/(2\sum c_i^2)}$.

B For the remaining graph, color greedily to show that *G* cannot exist.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*. - $\mathcal{P}_{1,2}$: other cliques.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques C where some $v \notin C$ has "many" neighbors in C.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques C where some $v \notin C$ has "many" neighbors in C.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques *C* where some $v \notin C$ has "many" neighbors in *C*.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques C where some $v \notin C$ has "many" neighbors in C.

Decomposition

We can partition V(G) into a sparse set S and dense sets D_1, \ldots, D_l so:

- every vertex v in S is has $||N(v)|| < {\Delta \choose 2} o(\Delta^2);$
- $\exists w_i \in D_i$ such that $D_i w_i$ is a clique of size $\Delta o(\Delta)$;
- no vertex outside of D_i has more than $\frac{3\Delta}{4}$ neighbors in D_i and w_i has at least $\frac{3\Delta}{4}$ neighbors in D_i .

Partition the cliques further.

- \mathcal{P}_3 : maximum cliques C where some $v \notin C$ has "many" neighbors in C.

Decompose *G* "nicely" so we can analyze in smaller pieces.

Lovász Local Lemma

Consider a set of (bad) events \mathcal{E} where for each $E \in \mathcal{E}$:

• $Pr(E) \leq p$

• *E* is mutually independent to a set of all but at most d other events.

If $ep(d + 1) \le 1$, then with positive probability, no event in \mathcal{E} occurs.

Color randomly to obtain a good (enough) partial coloring.

Azuma's Inequality

Let X be a random variable determined by n trials T_1, \ldots, T_n . For each i and any two possible outcomes, if the following holds: $|E(X|T_1 = t_1, \ldots, T_i = t_i) - E(X|T_1 = t_1, \ldots, T_i = t'_i)| \le c_i$, then $Pr(|X - E(X)| > t) \le 2e^{-t^2/(2\sum c_i^2)}$.

B For the remaining graph, color greedily to show that *G* cannot exist.

L Thank you

Thank you!