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The List Version of the Borodin–Kostochka Conjecture for Graphs with Large Max Degree

Preliminaries

A list assignment L assigns each vertex v a list L(v) of available colors.

An L-coloring is a function f on V (G ) where
– for each vertex v : f (v) ∈ L(v)
– for each edge xy : f (x) 6= f (y).

A graph G is k-choosable if there is an L-coloring for each L where
– for each vertex v : |L(v)| ≥ k .

The list chromatic number or choosability χl(G ) is the minimum such k.

A graph G is k-colorable if there is an L-coloring where
– for each vertex v : |L(v)| = [k].

The chromatic number χ(G ) is the minimum such k.

χ(G ) ≤ χl(G )
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Preliminaries

Fact

For any graph G,
ω(G ) ≤ χ(G ) ≤ ∆(G ) + 1

Where does χ(G ) stand?

Conjecture (Reed 1998)

For any graph G,

χ(G ) ≤
⌈
ω(G ) + ∆(G ) + 1

2

⌉

2 + 4 + 1

2
< 4 ≤

⌈
2 + 4 + 1

2
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Preliminaries

Fact

For any graph G,

ω(G ) ≤ χ(G ) ≤ χl(G ) ≤ ∆(G ) + 1

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with ∆(G ) ≥ 3,

if ω(G ) ≤ ∆(G ), then χ(G ) ≤ χl(G ) ≤ ∆(G )



The List Version of the Borodin–Kostochka Conjecture for Graphs with Large Max Degree

Preliminaries

Fact

For any graph G,

ω(G ) ≤ χ(G ) ≤ χl(G ) ≤ ∆(G ) + 1

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with ∆(G ) ≥ 3,

if ω(G ) ≤ ∆(G ), then χ(G ) ≤ χl(G ) ≤ ∆(G )

Can this be extended?
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Preliminaries

Fact

For any graph G,

ω(G ) ≤ χ(G ) ≤ χl(G ) ≤ ∆(G ) + 1

Theorem (Brooks 1941, Vizing 1976)

Given a graph G with ∆(G ) ≥ 3,
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Conjecture (Borodin–Kostochka 1977)

Given a graph G with ∆(G ) ≥ 9,

if ω(G ) ≤ ∆(G )− 1, then χ(G ) ≤ χl(G ) ≤ ∆(G )− 1

If true, then sharp. Blow each vertex of a 5-cycle into a 3-cycle.
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Conjecture (Borodin–Kostochka 1977)

Every graph G satisfying χ(G ) ≥ ∆(G ) ≥ 9 contains a K∆(G).

Theorem (Kostochka 1980)

Every graph G satisfying χ(G ) ≥ ∆(G ) contains a K∆(G)−28.
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Preliminaries

Conjecture (Borodin–Kostochka 1977)

Every graph G satisfying χ(G ) ≥ ∆(G ) ≥ 9 contains a K∆(G).

Theorem (Kostochka 1980, Mozhan 1983)

Every graph G satisfying χ(G ) ≥ ∆(G ) contains a K∆(G)−28.
Every graph G satisfying χ(G ) ≥ ∆(G ) ≥ 31 contains a K∆(G)−3.
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Conjecture (Borodin–Kostochka 1977)

Every graph G satisfying χ(G ) ≥ ∆(G ) ≥ 9 contains a K∆(G).

Theorem (Kostochka 1980, Mozhan 1983, Reed 1999)

Every graph G satisfying χ(G ) ≥ ∆(G ) contains a K∆(G)−28.
Every graph G satisfying χ(G ) ≥ ∆(G ) ≥ 31 contains a K∆(G)−3.
Every graph G satisfying χ(G ) ≥ ∆(G ) ≥ 1014 contains a K∆(G).

Reed claims the theorem is still true for ∆(G ) ≥ 103, but maybe not 102.
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Theorem (Vizing 1976)

Given a graph G with sufficiently large ∆(G ),

if ω(G ) ≤ ∆(G )− 0, then χl(G ) ≤ ∆(G )− 0
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if ω(G ) ≤ ∆(G )− k , then χl(G ) ≤ ∆(G )− k?

Not true even for the ordinary chromatic number when k = 2.

∆− 45-cycle
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Outline of the proof and Main Ideas

Theorem (C.–Kierstead–Rabern–Reed 2013+)

Given a graph G with ∆(G ) ≥ 1020,

if ω(G ) ≤ ∆(G )− 1, then χl(G ) ≤ ∆(G )− 1

Proof Sketch: Take a counterexample G with the minimum number of
vertices and a list assignment L where |L(v)|=∆(G )−1 for each vertex v .

Apply the Naive Coloring Procedure, which is the following:
1 Randomly choose a color in L(v) to use on v .
2 Remove any conflicts.
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Outline of the proof and Main Ideas

Safe Vertex

Given a partial coloring of G , an uncolored vertex v is safe if one of the
following occurs:

a color is repeated three times in N(v);

two colors are repeated twice in N(v);

a color is repeated twice in N(v) and a color not in L(v) is in N(v);

two colors not in L(v) appear in N(v).

Note that a vertex with two uncolored neighbors can always be colored.
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Outline of the proof and Main Ideas

Cliques are bad, especially the big (size at least 3∆
4 ) ones.

All but maybe one vertex of a big clique have many colors in common.

Lemma

If C is a clique of G, then there exists C ′ ⊂ C such that |C ′| = |C | − 1
and |L(x) ∩ L(y)| ≥ |C | − 3 for all x , y ∈ C ′.

CC ′

?

w
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?
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(for maximum cliques)
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Each vertex in a big clique C has at most one neighbor outside of C
with more than 4 neighbors in C .
There is at most one vertex outside of a (∆− 1)-clique with more
than 4 neighbors in the clique.
Each special color appears in at most 5 lists.
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Outline of the proof and Main Ideas

1 Decompose G “nicely” so we can analyze in smaller pieces.

Lovász Local Lemma

Consider a set of (bad) events E where for each E ∈ E :

Pr(E) ≤ p
E is mutually independent to a set of all but at most d other events.

If ep(d + 1) ≤ 1, then with positive probability, no event in E occurs.

2 Color randomly to obtain a good (enough) partial coloring.

Azuma’s Inequality

Let X be a random variable determined by n trials T1, . . . ,Tn. For each i
and any two possible outcomes, if the following holds:
|E (X |T1 = t1, . . . ,Ti = ti )− E (X |T1 = t1, . . . ,Ti = t ′i )| ≤ ci ,

then Pr(|X − E (X )| > t) ≤ 2e−t
2/(2

∑
c2
i ).

3 For the remaining graph, color greedily to show that G cannot exist.
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Outline of the proof and Main Ideas

Decomposition

We can partition V (G ) into a sparse set S and dense sets D1, . . . ,Dl so:

every vertex v in S is has ||N(v)|| <
(

∆
2

)
− o(∆2);

∃wi ∈ Di such that Di − wi is a clique of size ∆− o(∆);

no vertex outside of Di has more than 3∆
4 neighbors in Di and wi

has at least 3∆
4 neighbors in Di .

S
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Thank you

Thank you!


	Preliminaries
	History
	History
	History
	Outline of the proof and Main Ideas
	Thank you

