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Theorem (Lindstrom (1972))
If a hypergraph H has more than (t — 1)n edges, then H has the t-EUP.
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Theorem (Lindstrom (1972))

U(n,t) < (t—1)n

Maximum number of edges U(n, t) in a hypergraph without the t-EUP.
Maximum number of edges V(n, t) in a hypergraph without the t-EVP.

n-vertex ‘ ‘ t-EUP ‘ t-EVP

graphs Uy(n, t) | Va(n,t)
k-uniform hypergraphs || Ux(n, t) | Vi(n,t)
hypergraphs U(n,t) | V(n,t)

Note that A(n,t) > Ax(n,t) for A € {U,V}.
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A graph G has the 2-EUP if and only if G has an even cycle or has two
odd cycles in the same component.

Corollary

Uy(n,2) =n

Equality holds only for either connected graphs with only one odd cycle
or the disjoint union of odd cycles.
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L The 2-EUP and 2-EVP of Graphs

A graph G has the 2-EUP if and only if G has an even cycle or has two
odd cycles in the same component.

A graph G has the 2-EV/P if and only if G has an even circuit.

A graph G does not have the 2-EVP if any only if G is an
odd-cycle-forest.
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Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two
odd cycles in the same component.

Theorem
A graph G has the 2-EV/P if and only if G has an even circuit.

Theorem

A graph G does not have the 2-EVP if any only if G is an
odd-cycle-forest.

Corollary

Va(n,2) = EnJ 1

Equality holds only for odd-cycle-trees obtained by replacing all vertices
in a tree by triangles.
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Theorem
Fort € N,

Va(n, t) < 4(t—1)n

Proof. Let G have 4(t — 1)n + 1 edges.

= a bipartite H C G has 2(t — 1)n+ 1 edges

= a subgraph H" C H has (g — 1)n+ 1 edges for prime t < g < 2t
= a g-divisible subgraph Q@ C H’

A graph Q is a g-divisible graph if the degree of each vertex in Q is a
multiple of an integer q.

Lemma
If Q is a g-divisible bipartite graph, then Q has the q-EVP.
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G? does not have the t-EVP.

oSS

Let H? ), be a k-uniform hypergraph such that V(H;,) = V(G7)U S and
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Lemma

G? does not have the t-EVP.

oSS

Let H? ), be a k-uniform hypergraph such that V(H;,) = V(G7)U S and
E(H? ) ={eUS:ee€ E(G7)}. Then H7, does not have the t-EVP.

Theorem

For some polynomial fi(t) with degree at most 2,

Vi(n, t) > (t -1+ ﬁ) n — fi(t)
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For an n-vertex k-uniform hypergraph with k > 3,

Vi(n,2) < (log, k + (1 + £k) log, log, k)n

for some €, > 0, where ¢, — 0 as k — oo.
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Theorem

For an n-vertex k-uniform hypergraph with k > 3,
Vi(n,2) < (log, k + (1 + £k) log, log, k)n
for some €, > 0, where ¢, — 0 as k — oo.

Proof.
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Theorem

For an n-vertex k-uniform hypergraph with k > 3,
Vi(n,2) < (log, k + (1 + £k) log, log, k)n
for some €, > 0, where ¢, — 0 as k — oo.

Proof. H with m = (log k + (1 + ¢«) log log k)n edges has 2™ subgraphs.

Let (1, ..., d,) be the degree list of H. Since >, d; = km, there exists
at most [[/_;(di+1) < (kTm + 1)" degree lists for subhypergraphs.
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Theorem

For an n-vertex k-uniform hypergraph with k > 3,
Vi(n,2) < (log, k + (1 + £k) log, log, k)n
for some €, > 0, where ¢, — 0 as k — oo.

Proof. H with m = (log k + (1 + ¢«) log log k)n edges has 2™ subgraphs.

Let (1, ..., d,) be the degree list of H. Since >, d; = km, there exists
at most [[/_;(di+1) < (kT’" + 1)" degree lists for subhypergraphs.

If H does not have 2-EVP = subhypergraphs must have different lists.
k n
2m < <,r7n + 1) = (k(logy k)'%)" < (klogy k-+(1+¢k)k log, log, k+1)"

With appropriate €k, contradiction. Hence, H has the 2-EVP. O
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Theorem

For an n-vertex k-uniform hypergraph with k > 3,
Vi(n,2) < (logy k + (14 ) log, log, k)n
for some g > 0, where g, — 0 as k — oo.

€x must be greater than a root of
1+e 1
(logy k)™ ™% —logy k — (1 + &) log; Iog2k—;:0

As k increases, €4 — 0, but at a very slow rate.
When k = 10*? the constant ¢ still needs to be larger than 0.01.

Corollary

V3(n,2) < 3.5377n
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By refining the previous argument using known results about
r-A-systems, we prove the following theorems.

Theorem

Let t € N>3 and € > 0. There exists N = N(t,e) such that for n > N,

log n 2
2
V(n,t) < (4+¢)n (Ioglog og n)

Let t € N>3,k € N>, and € > 0. There exists N = N(t, k,e) such that
forn> N,

log n 2
t 1 Al—2
Vidn, t) <(1+¢)n (Iog log log n)
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We know Us(n,2) = n and Vp(n,2) = |5n] — 1.
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We know Us(n,2) = n and Vp(n,2) = |5n] — 1.

V5(n,3) = EnJ

Equality holds only for adding an edge to an odd-cycle-tree obtained by
replacing all vertices in a tree by triangles.
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What about other exact values for graphs? In particular, V,(n, 3)?



Equicovering Subgraphs of Graphs and Hypergraphs
l7Open Questions

We know Us(n,2) = n and Vp(n,2) = |5n] — 1.

V5(n,3) = EnJ

Equality holds only for adding an edge to an odd-cycle-tree obtained by
replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, V,(n, 3)?

We know (t -1+ ﬁ) n— fil(t) < Va(n,t) < 4(t —1)n for

some function fi(t) of degree at most two. Close the gap?
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We know Us(n,2) = n and Vp(n,2) = |5n] — 1.

V5(n,3) = EnJ

Equality holds only for adding an edge to an odd-cycle-tree obtained by
replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, V,(n, 3)?

We know (t -1+ ﬁ) n— fil(t) < Va(n,t) < 4(t —1)n for

some function fi(t) of degree at most two. Close the gap?

Better lower bounds?
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Thank you!
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