Equicovering Subgraphs of Graphs and Hypergraphs

ILKYOO CHOI, Jaehoon Kim, Amelia Tebbe, Douglas B. West

University of Illinois at Urbana-Champaign

May 11, 2012

Outline

- 2 The 2-EUP and 2-EVP of Graphs
- 3 The *t*-EVP of Graphs
- 4 The *t*-EVP of Hypergraphs
- 5 Open Questions

- 2 The 2-EUP and 2-EVP of Graphs
- 3 The *t*-EVP of Graphs
- 4 The *t*-EVP of Hypergraphs
- 5 Open Questions

$$E(H_i) \cap E(H_j) = \emptyset \text{ for } 1 \le i < j \le t$$

$$\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e \text{ for } 1 \le i < j \le t$$

Has 2-EUP

$$E(H_i) \cap E(H_j) = \emptyset \text{ for } 1 \le i < j \le t$$

$$\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e \text{ for } 1 \le i < j \le t$$

Has 2-EUP

$$E(H_i) \cap E(H_j) = \emptyset \text{ for } 1 \le i < j \le t$$

$$\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e \text{ for } 1 \le i < j \le t$$

Has 2-EUP

$$E(H_i) \cap E(H_j) = \emptyset \text{ for } 1 \le i < j \le t$$

$$\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e \text{ for } 1 \le i < j \le t$$

Has 2-EUP

$$E(H_i) \cap E(H_j) = \emptyset \text{ for } 1 \le i < j \le t$$

$$\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e \text{ for } 1 \le i < j \le t$$

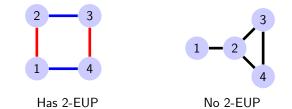


Has 2-EUP

$$E(H_i) \cap E(H_j) = \emptyset \text{ for } 1 \le i < j \le t$$

$$\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e \text{ for } 1 \le i < j \le t$$

Has 2-EUP



A hypergraph H has the *t*-Equal Union Property (*t*-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

Has 2-EUP

No 2-EUP

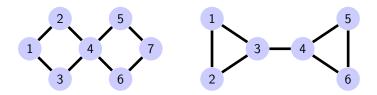
Theorem (Lindström (1972))

If a hypergraph H has more than (t-1)n edges, then H has the t-EUP.

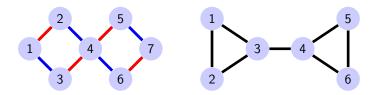
A hypergraph H has the *t*-Equal Valence Property (*t*-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

2
$$d_{H_i}(v) = d_{H_j}(v)$$
 for $v \in V(H)$ and $1 \le i < j \le t$

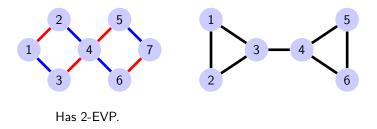
A hypergraph *H* has the *t*-*Equal Valence Property* (*t*-EVP) if there are *t* distinct subhypergraphs H_1, \ldots, H_t of *H* such that



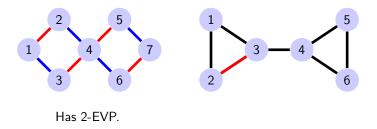
A hypergraph *H* has the *t*-*Equal Valence Property* (*t*-EVP) if there are *t* distinct subhypergraphs H_1, \ldots, H_t of *H* such that



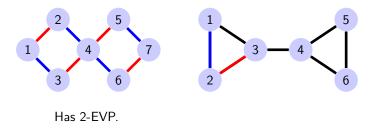
A hypergraph *H* has the *t*-*Equal Valence Property* (*t*-EVP) if there are *t* distinct subhypergraphs H_1, \ldots, H_t of *H* such that



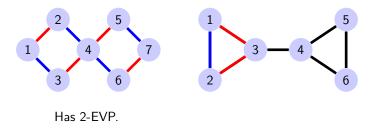
A hypergraph H has the *t*-Equal Valence Property (*t*-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that



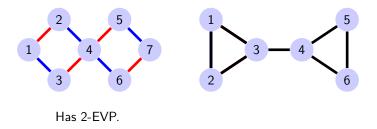
A hypergraph H has the *t*-Equal Valence Property (*t*-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that



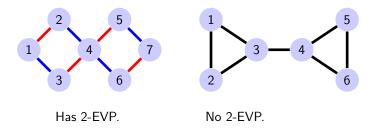
A hypergraph H has the *t*-Equal Valence Property (*t*-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that



A hypergraph H has the *t*-Equal Valence Property (*t*-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

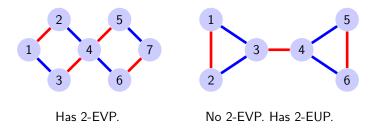


A hypergraph H has the *t*-Equal Valence Property (*t*-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that



A hypergraph H has the *t*-Equal Valence Property (*t*-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

$$\begin{array}{ll} \blacksquare \ E(H_i) \cap E(H_j) = \emptyset \ \text{for} \ 1 \le i < j \le t \\ \blacksquare \ d_{H_i}(v) = d_{H_j}(v) \ \text{for} \ v \in V(H) \ \text{and} \ 1 \le i < j \le t \end{array}$$



Theorem (Lindström (1972))

If a hypergraph H has more than (t-1)n edges, then H has the t-EUP.

Theorem (Lindström (1972))

If a hypergraph H has more than (t-1)n edges, then H has the t-EUP.

Maximum number of edges $\mathbb{U}(n, t)$ in a hypergraph without the *t*-EUP. Maximum number of edges $\mathbb{V}(n, t)$ in a hypergraph without the *t*-EVP.

Theorem (Lindström (1972))

$$\mathbb{U}(n,t) \leq (t-1)n$$

Maximum number of edges $\mathbb{U}(n, t)$ in a hypergraph without the *t*-EUP. Maximum number of edges $\mathbb{V}(n, t)$ in a hypergraph without the *t*-EVP.

Theorem (Lindström (1972))

$$\mathbb{U}(n,t) \leq (t-1)n$$

Maximum number of edges $\mathbb{U}(n, t)$ in a hypergraph without the *t*-EUP. Maximum number of edges $\mathbb{V}(n, t)$ in a hypergraph without the *t*-EVP.

<i>n</i> -vertex	t-EUP	<i>t</i> -EVP
graphs	$\mathbb{U}_2(n,t)$	$\mathbb{V}_2(n,t)$
<i>k</i> -uniform hypergraphs	$\mathbb{U}_k(n,t)$	$\mathbb{V}_k(n,t)$
hypergraphs	$\mathbb{U}(n,t)$	$\mathbb{V}(n,t)$

Note that $A(n, t) \ge A_k(n, t)$ for $A \in \{\mathbb{U}, \mathbb{V}\}$.

2 The 2-EUP and 2-EVP of Graphs

3 The *t*-EVP of Graphs

- 4 The *t*-EVP of Hypergraphs
- 5 Open Questions

Characterization of Graphs with the 2-EUP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Corollary

$$\mathbb{U}_2(n,2)=n$$

Equality holds only for either connected graphs with only one odd cycle or the disjoint union of odd cycles.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

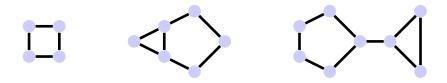
A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Leftarrow)

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

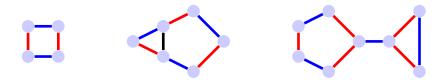
Proof. (\Leftarrow)



Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (⇐)



Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)

Theorem

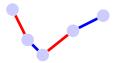
A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



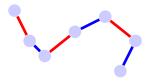
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



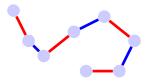
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



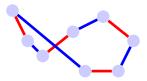
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



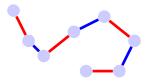
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



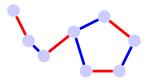
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



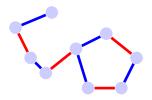
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



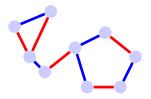
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



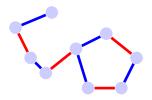
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



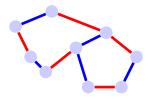
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.



Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

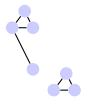
A graph G has the 2-EVP if and only if G has an even circuit.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

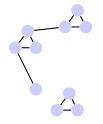


Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

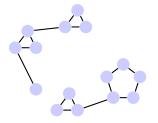


Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

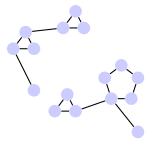


Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

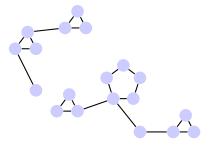


Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

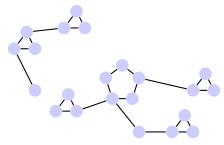


Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

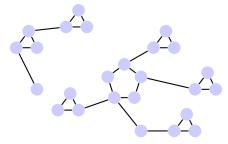


Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.



Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

Theorem

A graph G does not have the 2-EVP if any only if G is an odd-cycle-forest.

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

Theorem

A graph G does not have the 2-EVP if any only if G is an odd-cycle-forest.

Corollary

$$\mathbb{V}_2(n,2) = \left\lfloor \frac{4}{3}n \right\rfloor - 1$$

Equality holds only for odd-cycle-trees obtained by replacing all vertices in a tree by triangles.

- 2 The 2-EUP and 2-EVP of Graphs
- 3 The *t*-EVP of Graphs
- 4 The *t*-EVP of Hypergraphs
- 5 Open Questions

Theorem

For $t \in \mathbb{N}$,

$$\mathbb{V}_2(n,t) \leq 4(t-1)n$$

Theorem

For $t \in \mathbb{N}$,

$$\mathbb{V}_2(n,t) \leq 4(t-1)n$$

Proof. Let G have 4(t-1)n+1 edges.

Theorem

For $t \in \mathbb{N}$,

$$\mathbb{V}_2(n,t) \leq 4(t-1)n$$

Proof. Let G have 4(t-1)n+1 edges. \Rightarrow a bipartite $H \subseteq G$ has 2(t-1)n+1 edges

Theorem

For $t \in \mathbb{N}$,

$$\mathbb{V}_2(n,t) \leq 4(t-1)n$$

Proof. Let G have 4(t-1)n + 1 edges. \Rightarrow a bipartite $H \subseteq G$ has 2(t-1)n + 1 edges \Rightarrow a subgraph $H' \subseteq H$ has (q-1)n + 1 edges for prime $t \leq q < 2t$

Theorem

For $t \in \mathbb{N}$,

$$\mathbb{V}_2(n,t) \leq 4(t-1)n$$

Proof. Let G have 4(t-1)n + 1 edges. \Rightarrow a bipartite $H \subseteq G$ has 2(t-1)n + 1 edges \Rightarrow a subgraph $H' \subseteq H$ has (q-1)n + 1 edges for prime $t \leq q < 2t$ \Rightarrow a q-divisible subgraph $Q \subseteq H'$

Theorem

For $t \in \mathbb{N}$,

$$\mathbb{V}_2(n,t) \leq 4(t-1)n$$

Proof. Let G have 4(t-1)n + 1 edges. \Rightarrow a bipartite $H \subseteq G$ has 2(t-1)n + 1 edges \Rightarrow a subgraph $H' \subseteq H$ has (q-1)n + 1 edges for prime $t \leq q < 2t$ \Rightarrow a q-divisible subgraph $Q \subseteq H'$

A graph Q is a *q*-divisible graph if the degree of each vertex in Q is a multiple of an integer q.

Lemma

If Q is a q-divisible bipartite graph, then Q has the q-EVP.

Every (t-1)-degenerate graph does not have the t-EVP. This gives $\mathbb{V}_2(n,t) \geq (t-1)n$

Every (t-1)-degenerate graph does not have the *t*-EVP. This gives

$$\mathbb{V}_2(n,t) \geq (t-1)n$$

Construct G_t^a in the following manner:

Every (t-1)-degenerate graph does not have the *t*-EVP. This gives

$$\mathbb{V}_2(n,t) \geq (t-1)n$$

Construct G_t^a in the following manner:

Every (t-1)-degenerate graph does not have the *t*-EVP. This gives

$$\mathbb{V}_2(n,t) \geq (t-1)n$$

Construct G_t^a in the following manner:

Every (t-1)-degenerate graph does not have the *t*-EVP. This gives

$$\mathbb{V}_2(n,t) \geq (t-1)n$$

Construct G_t^a in the following manner:

Every (t-1)-degenerate graph does not have the *t*-EVP. This gives

$$\mathbb{V}_2(n,t) \geq (t-1)n$$

Construct G_t^a in the following manner:



Every (t-1)-degenerate graph does not have the *t*-EVP. This gives

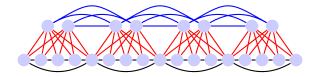
$$\mathbb{V}_2(n,t) \geq (t-1)n$$

Construct G_t^a in the following manner:

Every (t-1)-degenerate graph does not have the *t*-EVP. This gives

$$\mathbb{V}_2(n,t) \geq (t-1)n$$

Construct G_t^a in the following manner:

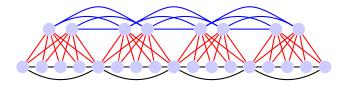


Lemma

 G_t^a does not have the t-EVP.

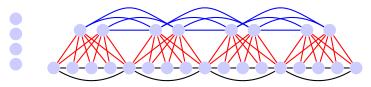
Lemma

 G_t^a does not have the t-EVP.



Lemma

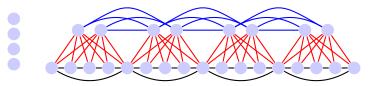
 G_t^a does not have the t-EVP.



Let $H^a_{t,k}$ be a k-uniform hypergraph such that $V(H^a_{t,k}) = V(G^a_t) \cup S$ and $E(H^a_{t,k}) = \{e \cup S : e \in E(G^a_t)\}$. Then $H^a_{t,k}$ does not have the t-EVP.

Lemma

 G_t^a does not have the t-EVP.



Let $H^a_{t,k}$ be a k-uniform hypergraph such that $V(H^a_{t,k}) = V(G^a_t) \cup S$ and $E(H^a_{t,k}) = \{e \cup S : e \in E(G^a_t)\}$. Then $H^a_{t,k}$ does not have the t-EVP.

Theorem

For some polynomial $f_k(t)$ with degree at most 2,

$$\mathbb{V}_k(n,t) \geq \left(t-1+\frac{1}{2(t-1)}\right)n-f_k(t)$$

- 2 The 2-EUP and 2-EVP of Graphs
- 3 The *t*-EVP of Graphs
- 4 The *t*-EVP of Hypergraphs

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\mathbb{V}_k(n,2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\mathbb{V}_k(n,2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

Proof.

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\mathbb{V}_k(n,2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

Proof. *H* with $m = (\log k + (1 + \varepsilon_k) \log \log k)n$ edges has 2^m subgraphs. Let (d_1, \ldots, d_n) be the degree list of *H*. Since $\sum_{i=1}^n d_i = km$, there exists at most $\prod_{i=1}^n (d_i + 1) \le (\frac{km}{n} + 1)^n$ degree lists for subhypergraphs.

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\mathbb{V}_k(n,2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

Proof. *H* with $m = (\log k + (1 + \varepsilon_k) \log \log k)n$ edges has 2^m subgraphs. Let (d_1, \ldots, d_n) be the degree list of *H*. Since $\sum_{i=1}^n d_i = km$, there exists at most $\prod_{i=1}^n (d_i + 1) \le (\frac{km}{n} + 1)^n$ degree lists for subhypergraphs.

If H does not have 2-EVP \Rightarrow subhypergraphs must have different lists.

$$2^{m} \leq \left(\frac{km}{n} + 1\right)^{n} \Rightarrow (k(\log_{2} k)^{1 + \varepsilon_{k}})^{n} \leq (k \log_{2} k + (1 + \varepsilon_{k})k \log_{2} \log_{2} k + 1)^{n}$$

With appropriate ε_k , contradiction. Hence, *H* has the 2-EVP.

The 2-EVP of Hypergraphs

Theorem

For an n-vertex k-uniform hypergraph with $k \ge 3$,

$$\mathbb{V}_k(n,2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

 ε_k must be greater than a root of

$$(\log_2 k)^{1+\varepsilon_k} - \log_2 k - (1+\varepsilon_k) \log_2 \log_2 k - \frac{1}{k} = 0$$

As k increases, $\varepsilon_k \to 0$, but at a very slow rate. When $k = 10^{42}$ the constant ε_k still needs to be larger than 0.01.

Corollary

 $V_3(n,2) < 3.5377n$

The *t*-EVP of Hypergraphs

By refining the previous argument using known results about r- Δ -systems, we prove the following theorems.

Theorem

Let $t \in \mathbb{N}_{\geq 3}$ and $\varepsilon > 0$. There exists $N = N(t, \varepsilon)$ such that for $n \geq N$,

$$\mathbb{V}(n,t) < (4+\varepsilon)n^2 \left(\frac{\log n}{\log \log \log n}\right)^2$$

Theorem

Let $t \in \mathbb{N}_{\geq 3}$, $k \in \mathbb{N}_{\geq 2}$, and $\varepsilon > 0$. There exists $N = N(t, k, \varepsilon)$ such that for $n \geq N$,

$$\mathbb{V}_k(n,t) < (1+\varepsilon)n^2 \left(rac{\log n}{\log\log\log n}
ight)^2$$

- 2 The 2-EUP and 2-EVP of Graphs
- 3 The *t*-EVP of Graphs
- 4 The *t*-EVP of Hypergraphs
- 5 Open Questions

1 We know
$$\mathbb{U}_2(n,2)=n$$
 and $\mathbb{V}_2(n,2)=\lfloor rac{4}{3}n
floor-1.$

I We know
$$\mathbb{U}_2(n,2) = n$$
 and $\mathbb{V}_2(n,2) = \lfloor \frac{4}{3}n \rfloor - 1$.

$$\mathbb{V}_2'(n,3) = \left\lfloor \frac{4}{3}n \right\rfloor$$

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

I We know
$$\mathbb{U}_2(n,2) = n$$
 and $\mathbb{V}_2(n,2) = \lfloor \frac{4}{3}n \rfloor - 1$.

$$\mathbb{V}_2'(n,3) = \left\lfloor \frac{4}{3}n \right\rfloor$$

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, $\mathbb{V}_2(n,3)$?

1 We know
$$\mathbb{U}_2(n,2) = n$$
 and $\mathbb{V}_2(n,2) = \lfloor \frac{4}{3}n \rfloor - 1$.

$$\mathbb{V}_2'(n,3) = \left\lfloor \frac{4}{3}n \right\rfloor$$

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, $\mathbb{V}_2(n,3)$?

■ We know
$$\left(t - 1 + \frac{1}{2(t-1)}\right)n - f_k(t) \le \mathbb{V}_2(n,t) \le 4(t-1)n$$
 for some function $f_k(t)$ of degree at most two. Close the gap?

I We know
$$\mathbb{U}_2(n,2) = n$$
 and $\mathbb{V}_2(n,2) = \lfloor \frac{4}{3}n \rfloor - 1$.

$$\mathbb{V}_2'(n,3) = \left\lfloor \frac{4}{3}n \right\rfloor$$

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, $\mathbb{V}_2(n,3)$?

■ We know
$$\left(t - 1 + \frac{1}{2(t-1)}\right)n - f_k(t) \le \mathbb{V}_2(n,t) \le 4(t-1)n$$
 for some function $f_k(t)$ of degree at most two. Close the gap?

3 Better lower bounds?

Open Questions

Thank you!