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t-Equal Valence Property

A hypergraph H has the t-Equal Valence Property (t-EVP) if there are t
distinct subhypergraphs H1, . . . ,Ht of H such that

1 E (Hi ) ∩ E (Hj) = ∅ for 1 ≤ i < j ≤ t

2 dHi (v) = dHj (v) for v ∈ V (H) and 1 ≤ i < j ≤ t

Note that the t-EVP is a stronger property than t-EUP.
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Maximum number of edges V(n, t) in a hypergraph without the t-EVP.



Equicovering Subgraphs of Graphs and Hypergraphs

Definitions

Notation

Theorem (Lindström (1972))

If a hypergraph H has more than (t − 1)n edges, then H has the t-EUP.

Maximum number of edges U(n, t) in a hypergraph without the t-EUP.
Maximum number of edges V(n, t) in a hypergraph without the t-EVP.



Equicovering Subgraphs of Graphs and Hypergraphs

Definitions

Notation

Theorem (Lindström (1972))

U(n, t) ≤ (t − 1)n

Maximum number of edges U(n, t) in a hypergraph without the t-EUP.
Maximum number of edges V(n, t) in a hypergraph without the t-EVP.

n-vertex t-EUP t-EVP
graphs U2(n, t) V2(n, t)

k-uniform hypergraphs Uk(n, t) Vk(n, t)
hypergraphs U(n, t) V(n, t)

Note that A(n, t) ≥ Ak(n, t) for A ∈ {U,V}.
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The 2-EUP and 2-EVP of Graphs

Characterization of Graphs with the 2-EUP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two
odd cycles in the same component.

Corollary

U2(n, 2) = n

Equality holds only for either connected graphs with only one odd cycle
or the disjoint union of odd cycles.
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Proof. (⇐)
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A graph is an odd-cycle-forest if it can be obtained in this fashion:
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odd-cycle-forest.

Corollary

V2(n, 2) =
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3
n
⌋
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Equality holds only for odd-cycle-trees obtained by replacing all vertices
in a tree by triangles.
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The t-EVP of Graphs

The t-EVP of Graphs: Upper Bound

Theorem

For t ∈ N,
V2(n, t) ≤ 4(t − 1)n

Proof. Let G have 4(t − 1)n + 1 edges.
⇒ a bipartite H ⊆ G has 2(t − 1)n + 1 edges
⇒ a subgraph H ′ ⊆ H has (q − 1)n + 1 edges for prime t ≤ q < 2t
⇒ a q-divisible subgraph Q ⊆ H ′

A graph Q is a q-divisible graph if the degree of each vertex in Q is a
multiple of an integer q.

Lemma

If Q is a q-divisible bipartite graph, then Q has the q-EVP.
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The t-EVP of Graphs

The t-EVP of Graphs: Lower Bound

Every (t − 1)-degenerate graph does not have the t-EVP. This gives

V2(n, t) ≥ (t − 1)n

Construct G a
t in the following manner:

Let Wt = Kt−2 ∨ Ct+1. For a copies of Wt , do:
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The t-EVP of Graphs

The t-EVP of Graphs: Lower Bound

Lemma

G a
t does not have the t-EVP.

Let Ha
t,k be a k-uniform hypergraph such that V (Ha

t,k) = V (G a
t ) ∪ S and

E (Ha
t,k) = {e ∪ S : e ∈ E (G a

t )}. Then Ha
t,k does not have the t-EVP.

Theorem

For some polynomial fk(t) with degree at most 2,

Vk(n, t) ≥
(
t − 1 +

1

2(t − 1)

)
n − fk(t)
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The t-EVP of Hypergraphs

The 2-EVP of Hypergraphs: Proof

Theorem

For an n-vertex k-uniform hypergraph with k ≥ 3,

Vk(n, 2) < (log2 k + (1 + εk) log2 log2 k)n

for some εk > 0, where εk → 0 as k →∞.

Proof. H with m = (log k + (1 + εk) log log k)n edges has 2m subgraphs.

Let (d1, . . . , dn) be the degree list of H. Since
∑n

i=1 di = km, there exists

at most
∏n

i=1(di + 1) ≤
(
km
n + 1

)n
degree lists for subhypergraphs.

If H does not have 2-EVP ⇒ subhypergraphs must have different lists.

2m ≤
(
km

n
+ 1

)n

⇒ (k(log2 k)1+εk )n ≤ (k log2 k+(1+εk)k log2 log2 k+1)n

With appropriate εk , contradiction. Hence, H has the 2-EVP.
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The 2-EVP of Hypergraphs

Theorem

For an n-vertex k-uniform hypergraph with k ≥ 3,

Vk(n, 2) < (log2 k + (1 + εk) log2 log2 k)n

for some εk > 0, where εk → 0 as k →∞.

εk must be greater than a root of

(log2 k)1+εk − log2 k − (1 + εk) log2 log2 k −
1

k
= 0

As k increases, εk → 0, but at a very slow rate.
When k = 1042 the constant εk still needs to be larger than 0.01.

Corollary

V3(n, 2) < 3.5377n
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The t-EVP of Hypergraphs

The t-EVP of Hypergraphs

By refining the previous argument using known results about
r -∆-systems, we prove the following theorems.

Theorem

Let t ∈ N≥3 and ε > 0. There exists N = N(t, ε) such that for n ≥ N,

V(n, t) < (4 + ε)n2

(
log n

log log log n

)2

Theorem

Let t ∈ N≥3, k ∈ N≥2, and ε > 0. There exists N = N(t, k, ε) such that
for n ≥ N,

Vk(n, t) < (1 + ε)n2

(
log n

log log log n

)2
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Open Questions

1 We know U2(n, 2) = n and V2(n, 2) = b 4
3nc − 1.

Theorem

V′2(n, 3) =
⌊4

3
n
⌋

Equality holds only for adding an edge to an odd-cycle-tree obtained by
replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, V2(n, 3)?

2 We know
(
t − 1 + 1

2(t−1)

)
n − fk(t) ≤ V2(n, t) ≤ 4(t − 1)n for

some function fk(t) of degree at most two. Close the gap?

3 Better lower bounds?
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Thank you!
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