Fractional Matchings and Matchings of Graphs

ILKYOO CHOI

KAIST, Korea

Joint work with Jaehoon Kim and Suil O

April 25, 2015

An independent set: a set of vertices where no two are adjacent. A matching : a set of edges where no two share endpoints.

An independent set: a set of vertices where no two are adjacent. A matching : a set of edges where no two share endpoints.

An independent set: a set of vertices where no two are adjacent. A matching : a set of edges where no two share endpoints.

An independent set: a set of vertices where no two are adjacent. A matching : a set of edges where no two share endpoints.

In other words.....

A matching is a function ϕ such that - for each edge $e: \phi(e) \in \{0, 1\}$ - for each vertex $v: \sum_{u \sim v} \phi(uv) \leq 1$. The size of ϕ is $\sum_{e \in E(G)} \phi(e)$. The matching number $\alpha'(G)$ of G is the max size of a matching.

An independent set: a set of vertices where no two are adjacent. A matching : a set of edges where no two share endpoints.

In other words.....

A matching is a function ϕ such that - for each edge $e: \phi(e) \in \{0, 1\}$ - for each vertex $v: \sum_{u \sim v} \phi(uv) \leq 1$. The size of ϕ is $\sum_{e \in E(G)} \phi(e)$. The matching number $\alpha'(G)$ of G is the max size of a matching.

What if we relax the range of ϕ?

• A fractional matching is a function ϕ such that

- for each edge $e: \phi(e) \in [0, 1]$
- for each vertex \mathbf{v} : $\sum_{u \sim v} \phi(uv) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

- A fractional matching is a function ϕ such that
 - for each edge e: $\phi(e) \in [0, 1]$
 - for each vertex **v**: $\sum_{u \sim v} \phi(uv) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

• A fractional clique is a function ϕ such that

- for each vertex \mathbf{v} : $\phi(\mathbf{v}) \in [0,1]$
- for each independent set I: $\sum_{v \in N(I)} \phi(v) \leq 1$.

The fractional clique number $\omega_f(G) = \max_{\phi} \{\sum_{v} \phi(v)\}$

- A fractional matching is a function ϕ such that
 - for each edge **e**: $\phi(\mathbf{e}) \in [0, 1]$
 - for each vertex **v**: $\sum_{u \sim v} \phi(uv) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

• A fractional clique is a function ϕ such that

- for each vertex \mathbf{v} : $\phi(\mathbf{v}) \in [0,1]$
- for each independent set $I: \sum_{v \in N(I)} \phi(v) \leq 1$.

The fractional clique number $\omega_f(G) = \max_{\phi} \{\sum_{v} \phi(v)\}$

• A fractional coloring is a function ϕ such that

- for each independent set $I: \phi(I) \in [0, 1]$
- for each vertex **v**: $\sum_{\mathbf{v} \in I} \phi(\mathbf{i}) \geq 1$.

The fractional chromatic number $\chi_f(G) = \min_{\phi} \{\sum_{l} \phi(l)\}$

- A fractional dominating set is a function ϕ such that
 - for each vertex \mathbf{v} : $\phi(\mathbf{v}) \in [0,1]$
 - for each vertex \mathbf{v} : $\sum_{u \in N(v)} \phi(u) \ge 1$.

The fractional domination number $\gamma_f(G) = \min_{\phi} \{\sum_{\nu} \phi(\nu)\}$

- A fractional matching is a function ϕ such that
 - for each edge **e**: $\phi(e) \in [0, 1]$
 - for each vertex **v**: $\sum_{u \sim v} \phi(uv) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

• A fractional clique is a function ϕ such that

- for each vertex \mathbf{v} : $\phi(\mathbf{v}) \in [0,1]$
- for each independent set $I: \sum_{v \in N(I)} \phi(v) \leq 1$.

The fractional clique number $\omega_f(G) = \max_{\phi} \{\sum_{v} \phi(v)\}$

• A fractional coloring is a function ϕ such that

- for each independent set $I: \phi(I) \in [0, 1]$
- for each vertex **v**: $\sum_{\mathbf{v} \in I} \phi(\mathbf{i}) \geq 1$.

The fractional chromatic number $\chi_f(G) = \min_{\phi} \{\sum_{l} \phi(l)\}$

- A fractional dominating set is a function ϕ such that
 - for each vertex \mathbf{v} : $\phi(\mathbf{v}) \in [0,1]$
 - for each vertex \mathbf{v} : $\sum_{u \in N(v)} \phi(u) \ge 1$.

The fractional domination number $\gamma_f(G) = \min_{\phi} \{\sum_{v} \phi(v)\}$

Fractional Ramsey theory.. Fractionally Hamiltonian graphs..

- for each edge $e: \phi(e) \in [0,1]$
- for each vertex \mathbf{v} : $\sum_{u \sim v} \phi(uv) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

A fractional matching is a function ϕ such that - for each edge $e: \phi(e) \in [0, 1]$

- for each vertex $v: \sum_{u \sim v} \phi(uv) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

$$\alpha'_f(G) \ge \alpha'(G)$$

A fractional matching is a function ϕ such that – for each edge $e: \phi(e) \in [0, 1]$ – for each vertex $v: \sum_{u \sim v} \phi(uv) \leq 1$. The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

 $\alpha'_f(G) \geq \alpha'(G)$

There are infinitely many graphs G where $\alpha'_f(G) > \alpha'(G)$.

A fractional matching is a function ϕ such that - for each edge $e: \phi(e) \in [0, 1]$ - for each vertex $v: \sum_{u \sim v} \phi(uv) \leq 1$. The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_{v \in \phi} \phi(e)\}$

$$\alpha'_f(G) \ge \alpha'(G)$$

There are infinitely many graphs G where $\alpha'_{f}(G) > \alpha'(G)$.

- Any *k*-regular graph with no perfect matching

- for each edge $e: \phi(e) \in [0,1]$

- for each vertex **v**: $\sum_{u \sim v} \phi(uv) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

$$\alpha'_f(G) \ge \alpha'(G)$$

There are infinitely many graphs G where $\alpha'_f(G) > \alpha'(G)$.

- Any *k*-regular graph with no perfect matching : set each edge 1/k. - $\alpha'_f(G) = \frac{k|V(G)|}{2} \cdot \frac{1}{k} = \frac{|V(G)|}{2} > \alpha'(G)$ for k > 1.

– Ex: Odd cycles C_{2k+1} , odd complete graphs K_{2k+1}

- for each edge $e: \phi(e) \in [0,1]$
- for each vertex \mathbf{v} : $\sum_{u \sim \mathbf{v}} \phi(u\mathbf{v}) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

$$\alpha'_f(G) \ge \alpha'(G)$$

There are infinitely many graphs G where $\alpha'_f(G) > \alpha'(G)$.

- Any *k*-regular graph with no perfect matching : set each edge 1/k. - $\alpha'_f(G) = \frac{k|V(G)|}{2} \cdot \frac{1}{k} = \frac{|V(G)|}{2} > \alpha'(G)$ for k > 1.
- Ex: Odd cycles C_{2k+1} , odd complete graphs K_{2k+1}

- for each edge $e: \phi(e) \in [0,1]$
- for each vertex \mathbf{v} : $\sum_{u \sim \mathbf{v}} \phi(u\mathbf{v}) \leq 1$.

The fractional matching number $\alpha'_f(G) = \max_{\phi} \{\sum_e \phi(e)\}$

$$\alpha'_{f}(G) \geq \alpha'(G)$$

There are infinitely many graphs G where $\alpha'_f(G) > \alpha'(G)$.

- Any *k*-regular graph with no perfect matching : set each edge 1/k. - $\alpha'_f(G) = \frac{k|V(G)|}{2} \cdot \frac{1}{k} = \frac{|V(G)|}{2} > \alpha'(G)$ for k > 1.
- Ex: Odd cycles C_{2k+1} , odd complete graphs K_{2k+1}

For a constant *c*, there are infinitely many *G* where $\alpha'_f(G) - \alpha'(G) > c$ and $\alpha'_f(G)/\alpha'(G) > c$

Corollary (C.-Kim-O 2015+)

For any *n*-vertex graph G, we have $\alpha'_f(G) - \alpha'(G) \leq \frac{n}{6}$, and equality holds if any only if G is the disjoint union of copies of K_3 .

Corollary (C.–Kim–O 2015+)

For any **n**-vertex graph G with at least one edge, we have $\frac{\alpha'_f(G)}{\alpha'(G)} \leq \frac{3}{2}$, and equality holds if any only if G is the disjoint union of copies of K_3 .

Corollary (C.-Kim-O 2015+)

For any *n*-vertex graph G, we have $\alpha'_f(G) - \alpha'(G) \leq \frac{n}{6}$, and equality holds if any only if G is the disjoint union of copies of K_3 .

Corollary (C.-Kim-O 2015+)

For any **n**-vertex graph G with at least one edge, we have $\frac{\alpha'_i(G)}{\alpha'(G)} \leq \frac{3}{2}$, and equality holds if any only if G is the disjoint union of copies of K_3 .

Theorem (C.-Kim-O 2015+)

For $n \geq 5$, if G is an *n*-vertex connected graph, then

$$lpha_{f}'(G) - lpha'(G) \leq rac{n-2}{6} \quad and \quad rac{lpha_{f}'(G)}{lpha'(G)} \leq rac{3n}{2n+2}$$

Equality holds if and only if either

(i) n = 5 and either C_5 is a subgraph of G or $K_2 + K_3$ is a subgraph of G(ii) G has a vertex v such that the components of G - v are all K_3 except one single vertex.

Theorem (C.-Kim-O 2015+)

For $n \geq 5$, if G is an *n*-vertex connected graph, then

$$lpha_f'(G) - lpha'(G) \leq rac{n-2}{6} \quad \textit{and} \quad rac{lpha_f'(G)}{lpha'(G)} \leq rac{3n}{2n+2}$$

Equality holds if and only if either (i) n = 5 and either C_5 is a subgraph of G or $K_2 + K_3$ is a subgraph of G(ii) G has a vertex v such that the components of G - v are all K_3 except one single vertex.

Theorem (Tutte's 1-factor 1947)

G has a perfect matching iff $o(G - S) \leq |S|$ for every set $S \subseteq V(G)$.

Theorem (Tutte's 1-factor 1947)

G has a perfect matching iff $o(G - S) \le |S|$ for every set $S \subseteq V(G)$.

Theorem (Berge 1958)

For any *n*-vertex graph G, $\alpha'(G) = \frac{1}{2}(n - \max_{S} \{o(G - S) - |S|\})$.

Theorem (Tutte's 1-factor 1947)

G has a perfect matching iff $o(G - S) \le |S|$ for every set $S \subseteq V(G)$.

Theorem (Berge 1958)

For any *n*-vertex graph G, $\alpha'(G) = \frac{1}{2}(n - \max_{S} \{o(G - S) - |S|\}).$

For a graph H, let i(H) denote the number of isolated vertices of H.

Theorem (Scheinerman–Ullman 1997)

For any *n*-vertex graph G, $\alpha'_f(G) = \frac{1}{2}(n - \max_S\{i(G - S) - |S|\}).$

Theorem (Tutte's 1-factor 1947)

G has a perfect matching iff $o(G - S) \le |S|$ for every set $S \subseteq V(G)$.

Theorem (Berge 1958)

For any *n*-vertex graph G, $\alpha'(G) = \frac{1}{2}(n - \max_{S} \{o(G - S) - |S|\}).$

For a graph H, let i(H) denote the number of isolated vertices of H.

Theorem (Scheinerman–Ullman 1997)

For any *n*-vertex graph G, $\alpha'_f(G) = \frac{1}{2}(n - \max_S\{i(G - S) - |S|\}).$

Proposition

For any graph G, $2\alpha'_{f}(G)$ is an integer. Moreover, there is a fractional matching ϕ where $\sum_{e \in E(G)} \phi(e) = \alpha'_{f}(G)$ and $\phi(e) \in \{0, \frac{1}{2}, 1\}$ for each edge e.

For $n \geq 5$, if G is an *n*-vertex connected graph, then $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$.

For $n \geq 5$, if G is an *n*-vertex connected graph, then $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$.

Pf: Let G maximize $\alpha'_f(G) - \alpha'(G)$; S max set with max o(G - S) - |S|.

x = i(G - S) : number of vertex components of G - S y = o(G - S) - x : number of non-vertex components of G - S $n \ge |S| + x + 3y$: G - S has no even components

For $n \ge 5$, if G is an *n*-vertex connected graph, then $\alpha'_f(G) - \alpha'(G) \le \frac{n-2}{6}$.

Pf: Let G maximize $\alpha'_f(G) - \alpha'(G)$; S max set with max o(G - S) - |S|.

 $\begin{aligned} x &= i(G - S) &: \text{ number of } \text{ vertex components of } G - S \\ y &= o(G - S) - x &: \text{ number of non-vertex components of } G - S \\ n &\geq |S| + x + 3y &: G - S \text{ has no even components} \end{aligned}$

Assume $S \neq \emptyset$ and $x \ge 1$. (Omit when $S = \emptyset$ or x = 0.)

For $n \geq 5$, if G is an *n*-vertex connected graph, then $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$.

Pf: Let G maximize $\alpha'_f(G) - \alpha'(G)$; S max set with max o(G - S) - |S|.

 $\begin{aligned} x &= i(G - S) &: \text{ number of } \text{ vertex components of } G - S \\ y &= o(G - S) - x &: \text{ number of non-vertex components of } G - S \\ n &\geq |S| + x + 3y &: G - S \text{ has no even components} \end{aligned}$

Assume
$$S \neq \emptyset$$
 and $x \ge 1$. (Omit when $S = \emptyset$ or $x = 0$.)
 $\alpha'_f(G) - \alpha'(G)$

$$= \frac{1}{2} \left[\left(n - \max_{S_f} \{i(G - S_f) - |S_f|\} \right) - \left(n - \max_{S} \{o(G - S) - |S|\} \right) \right]$$

For $n \geq 5$, if G is an *n*-vertex connected graph, then $\alpha'_f(G) - \alpha'(G) \leq \frac{n-2}{6}$.

Pf: Let G maximize $\alpha'_f(G) - \alpha'(G)$; S max set with max o(G - S) - |S|.

 $\begin{aligned} x &= i(G - S) &: \text{ number of } \text{ vertex components of } G - S \\ y &= o(G - S) - x &: \text{ number of non-vertex components of } G - S \\ n &\geq |S| + x + 3y &: G - S \text{ has no even components} \end{aligned}$

Assume
$$S \neq \emptyset$$
 and $x \ge 1$. (Omit when $S = \emptyset$ or $x = 0$.)
 $\alpha'_{f}(G) - \alpha'(G)$
 $= \frac{1}{2} \left[\left(n - \max_{S_{f}} \{i(G - S_{f}) - |S_{f}|\} \right) - \left(n - \max_{S} \{o(G - S) - |S|\} \right) \right]$
 $= \frac{1}{2} \left[\max_{S} \{o(G - S) - |S|\} - \max_{S_{f}} \{i(G - S_{f}) - |S_{f}|\} \right]$
 $\le \frac{1}{2} \left[x + y - |S| - (x - |S|) \right] = \frac{y}{2} \le \frac{n - x - |S|}{6} \le \frac{n - 2}{6}$

What about for *k*-uniform hypergraphs?!

What about the difference and the ratio of other graph parameters and their fractional versions?

What about for *k*-uniform hypergraphs?!

What about the difference and the ratio of other graph parameters and their fractional versions?

Thank you for your attention!