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Fractional Matchings and Matchings of Graphs

A graph G : a pair of vertices V (G ) and edges E (G ).

An independent set: a set of vertices where no two are adjacent.
A matching : a set of edges where no two share endpoints.

In other words......

A matching is a function φ such that
– for each edge e: φ(e) ∈ {0, 1}
– for each vertex v :

∑
u∼v φ(uv) ≤ 1.

The size of φ is
∑

e∈E(G) φ(e).

The matching number α′(G ) of G is the max size of a matching.

What if we relax the range of φ..............?
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Fractional Matchings and Matchings of Graphs

Fractional Graph Theory...................

A fractional matching is a function φ such that
– for each edge e: φ(e) ∈ [0, 1]
– for each vertex v :

∑
u∼v φ(uv) ≤ 1.

The fractional matching number α′f (G ) = maxφ{
∑

e φ(e)}

A fractional clique is a function φ such that
– for each vertex v : φ(v) ∈ [0, 1]
– for each independent set I :

∑
v∈N(I ) φ(v) ≤ 1.

The fractional clique number ωf (G ) = maxφ{
∑

v φ(v)}
A fractional coloring is a function φ such that

– for each independent set I : φ(I ) ∈ [0, 1]
– for each vertex v :

∑
v∈I φ(I ) ≥ 1.

The fractional chromatic number χf (G ) = minφ{
∑

I φ(I )}
A fractional dominating set is a function φ such that

– for each vertex v : φ(v) ∈ [0, 1]
– for each vertex v :

∑
u∈N(v) φ(u) ≥ 1.

The fractional domination number γf (G ) = minφ{
∑

v φ(v)}
Fractional Ramsey theory.. Fractionally Hamiltonian graphs..
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The fractional matching number α′f (G ) = maxφ{
∑

e φ(e)}

α′f (G ) ≥ α′(G )

There are infinitely many graphs G where α′f (G ) > α′(G ).
– Any k-regular graph with no perfect matching : set each edge 1/k.

– α′f (G ) = k|V (G)|
2 · 1k = |V (G)|

2 > α′(G ) for k > 1.
– Ex: Odd cycles C2k+1, odd complete graphs K2k+1........

For a constant c , there are infinitely many G where α′f (G )− α′(G ) > c
and α′f (G )/α′(G ) > c
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Fractional Matchings and Matchings of Graphs

Lower bounds on α′f (G )− α′(G ) and α′f (G )/α′(G )?!

Theorem (C.–Kim–O 2015+)

For n ≥ 5, if G is an n-vertex connected graph, then

α′f (G )−α′(G ) ≤ n − 2

6
and

α′f (G )

α′(G )
≤ 3n

2n + 2

Equality holds if and only if either
(i) n = 5 and either C5 is a subgraph of G or K2 + K3 is a subgraph of G
(ii) G has a vertex v such that the components of G − v are all K3

except one single vertex.
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Fractional Matchings and Matchings of Graphs

For a graph H, let o(H) denote the number of odd components of H.

Theorem (Tutte’s 1-factor 1947)

G has a perfect matching iff o(G − S) ≤ |S | for every set S ⊆ V (G ).

Theorem (Berge 1958)

For any n-vertex graph G, α′(G ) = 1
2 (n −maxS{o(G − S)− |S |}).

For a graph H, let i(H) denote the number of isolated vertices of H.

Theorem (Scheinerman–Ullman 1997)

For any n-vertex graph G, α′f (G ) = 1
2 (n −maxS{i(G − S)− |S |}).

Proposition

For any graph G, 2α′f (G ) is an integer.
Moreover, there is a fractional matching φ where

∑
e∈E(G) φ(e) = α′f (G )

and φ(e) ∈ {0, 12 , 1} for each edge e.
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Theorem (C.–Kim–O 2015+)

For n ≥ 5, if G is an n-vertex connected graph, then α′f (G )−α′(G ) ≤ n−2
6 .

Pf: Let G maximize α′f (G )−α′(G ); S max set with max o(G − S)− |S |.

x = i(G − S) : number of vertex components of G − S

y = o(G − S)− x : number of non-vertex components of G − S

n ≥ |S |+ x + 3y : G−S has no even components

Assume S 6= ∅ and x ≥ 1. (Omit when S = ∅ or x = 0.)

α′f (G )− α′(G )

=
1

2

[(
n −max

Sf

{i(G − Sf )− |Sf |}
)
−
(
n −max

S
{o(G − S)− |S |}

)]
=

1

2

[
max
S
{o(G − S)− |S |} −max

Sf

{i(G − Sf )− |Sf |}
]

≤ 1

2

[
x + y − |S | − (x − |S |)

]
=

y

2
≤ n − x − |S |

6
≤ n − 2

6
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Fractional Matchings and Matchings of Graphs

What about for k-uniform hypergraphs?!

What about the difference and the ratio of other graph parameters and
their fractional versions?

Thank you for your attention!
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