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Improper Coloring of Planar Graphs

A graph G is k-colorable if the following is possible:
– partition V (G ) into k parts
– each part has maximum degree at most 0
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– each part has maximum degree at most di for i ∈ {1, . . . , r}
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Improper Coloring of Planar Graphs

Theorem (Appel–Haken 1977)

Every planar graph is (0, 0, 0, 0)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Theorem (Eaton–Hull 1999, Škrekovski 1999)

For each k, there exists a non-(1, k, k)-colorable planar graph.

Improper coloring planar graphs with at least three parts: SOLVED!

Theorem (Cowen–Goddard–Jesurum 1997)

Every toroidal graph is (1, 1, 1, 1, 1)-colorable and (2, 2, 2)-colorable.

Question (Cowen–Goddard–Jesurum 1997)

Is every toroidal graph (1, 1, 1, 1)-colorable?
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Improper Coloring of Planar Graphs

Improper coloring planar graphs with two parts..........

For each (d1, d2), there exists a non-(d1, d2)-colorable planar graph!

Problem

Given (d1, d2), determine the supremum x such that every graph with
Mad(G ) ≤ x is (d1, d2)-colorable.

Mad(G )= max
H⊆G

2|E (H)|
|V (H)|

. If G is planar with girth g , then Mad(G )< 2g
g−2 .

Problem

Given (d1, d2), determine the min g = g(d1, d2) such that every planar
graph with girth g is (d1, d2)-colorable.

Problem

Given (g ; d1), determine the min d2 = d2(g ; d1) such that every planar
graph with girth g is (d1, d2)-colorable.
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Improper Coloring of Planar Graphs

Problem

Given (d1, d2), determine the supremum x such that every graph with
Mad(G ) ≤ x is (d1, d2)-colorable.

Theorem (Havet–Sereni 2006)

For l ≥ 2, every G with Mad(G ) < l(l+2k)
l+k is (k, . . . , k)-choosable.

Theorem (Borodin–Ivanova–Montassier–Ochem–Raspaud 2009)

For k ≥ 0, every G with Mad(G ) < 3k+4
k+2 is (0, k)-colorable.

Theorem (Borodin–Ivanova–Montassier–Raspaud 2010)

For k ≥ 2, every G with Mad(G ) < 10k+22
3k+9 is (1, k)-colorable.

Theorem (Borodin–Kostochka 2011, Borodin–Kostochka–Yancey 2011)

Given d1 ≥ 0 and d2 ≥ 2d1 + 2, every G with

Mad(G ) < 2
(

2− d2+2
(d1+2)(d2+1)

)
is (d1, d2)-colorable, and this is sharp.

Every G with Mad(G ) ≤ 14/5 is (1, 1)-colorable, and this is sharp.
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Improper Coloring of Planar Graphs

Problem

Given (d1, d2), determine the min g = g(d1, d2) such that every planar
graph with girth g is (d1, d2)-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

For each d , there are non-(d , d)-colorable planar graphs. g(d , d) ≥ 4.

Škrekovski 1999 2000 Havet–Sereni 2006 Borodin–Kostochka–Yancey 13

Theorem

g(1, 1) ∈ {6, 7}
g(2, 2) ∈ {5, 6}
g(3, 3) ∈ {5, 6}
g(d , d) = 5 for d ≥ 4.

g(d1, d2) = 5 for d1, d2 ≥ 4 since g(d1, d2 + 1) ≤ g(d1, d2).
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Improper Coloring of Planar Graphs

Theorem (Montassier–Ochem 2014+, Borodin–Kostochka 2011, 2014)

g(0, k) = 7 for k ≥ 4
g(0, 3) ∈ {7, 8}
g(0, 2) = 8

Effort to determine g(0, 1).....

2007 Glebov–Zambalaeva
2009 Borodin–Ivanova
2011 Borodin–Kostochka
2013 Esperet–Montassier-Ochem–Pinlou
2014+ Kim–Kostochka–Zhu

Theorem

g(0, 1) ∈ {10, 11}

Theorem (Škrekovski 2000, C.–Raspaud 2014+)

g(3, 5) = 5
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Theorem (Škrekovski 2000, C.–Raspaud 2014+)

g(3, 5) = 5



Improper Coloring of Planar Graphs

Theorem (Montassier–Ochem 2014+, Borodin–Kostochka 2011, 2014)

g(0, k) = 7 for k ≥ 4
g(0, 3) ∈ {7, 8}
g(0, 2) = 8

Effort to determine g(0, 1).....

2007 Glebov–Zambalaeva
2009 Borodin–Ivanova
2011 Borodin–Kostochka
2013 Esperet–Montassier-Ochem–Pinlou
2014+ Kim–Kostochka–Zhu

Theorem

g(0, 1) ∈ {10, 11}
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Improper Coloring of Planar Graphs

d2 \ d1 0 1 2 3 4 5
0 ×
1 10 or 11 6 or 7
2 8 6 or 7 5 or 6
3 7 or 8 6 or 7 5 or 6 5 or 6
4 7 5 or 6 5 or 6 5 or 6 5
5 7 5 or 6 5 or 6 5 5 5
6 7 5 or 6 5 5 5 5



Improper Coloring of Planar Graphs

Problem

Given (g ; d1), determine the min d2 = d2(g ; d1) such that every planar
graph with girth g is (d1, d2)-colorable.

Theorem

All values of d2(g ; d1) are finite, except maybe d2(5; 1).

girth (0, k) (1, k) (2, k) (3, k) (4, k)
3 × × × × ×
4 × × × × ×
5 × (2, 6) (3, 5) (4, 4)
6 × (1, 4) (2, 2)
7 (0, 4) (1, 1)
8 (0, 2)

11 (0, 1)

Question (Montassier–Ochem 2014+)

Is d2(5; 1) finite or not?
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Improper Coloring of Planar Graphs

Non-(0, k)-colorable planar graph with girth 6.

There are also non-(d1, d2)-colorable planar graphs with girth 4.



Improper Coloring of Planar Graphs

girth (0, k) (1, k) (2, k) (3, k) (4, k)
3 × × × × ×
4 × × × × ×
5 × (1, ?) (2, 6) (3, 5) (4, 4)
6 × (1, 4) (2, 2)
7 (0, 4) (1, 1)
8 (0, 2)

11 (0, 1)

Question (Raspaud 2013, Montassier–Ochem 2014+)

Is every planar graph with girth 5 indeed (j , k)-colorable for all j + k ≥ 8?
– Is there some k where planar graphs with girth 5 are (1, k)-colorable?

Theorem (Havet–Sereni 06, C.–Raspaud 14+, Borodin–Kostochka 14)

Every planar graph with girth 5 is (2, 6)-, (3, 5)-, (4, 4)-colorable.

Theorem (Montassier–Ochem 2014+)

There exists a planar graph with girth 5 that is not (1, 3)-colorable.
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girth (0, k) (1, k) (2, k) (3, k) (4, k)
3 × × × × ×
4 × × × × ×
5 × (1, 2 ≤ ?) (2, 6) (3, 5) (4, 4)
6 × (1, 4) (2, 2)
7 (0, 4) (1, 1)
8 (0, 2)

11 (0, 1)

Question (Raspaud 2013, Montassier–Ochem 2014+)

Is every planar graph with girth 5 indeed (j , k)-colorable for all j + k ≥ 8?
– Is there some k where planar graphs with girth 5 are (1, k)-colorable?

Theorem (Havet–Sereni 06, C.–Raspaud 14+, Borodin–Kostochka 14)

Every planar graph with girth 5 is (2, 6)-, (3, 5)-, (4, 4)-colorable.

Theorem (C.)

There exists a planar graph with girth 5 that is not (1, 1)-colorable.

Theorem (Montassier–Ochem 2014+)

There exists a planar graph with girth 5 that is not (1, 3)-colorable.
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girth (0, k) (1, k) (2, k) (3, k) (4, k)
3 × × × × ×
4 × × × × ×
5 × (1, 4 ≤ ?) (2, 6) (3, 5) (4, 4)
6 × (1, 4) (2, 2)
7 (0, 4) (1, 1)
8 (0, 2)

11 (0, 1)

Question (Raspaud 2013, Montassier–Ochem 2014+)

Is every planar graph with girth 5 indeed (j , k)-colorable for all j + k ≥ 8?
– Is there some k where planar graphs with girth 5 are (1, k)-colorable?

Theorem (Havet–Sereni 06, C.–Raspaud 14+, Borodin–Kostochka 14)

Every planar graph with girth 5 is (2, 6)-, (3, 5)-, (4, 4)-colorable.

Theorem (Montassier–Ochem 2014+)

There exists a planar graph with girth 5 that is not (1, 3)-colorable.



Improper Coloring of Planar Graphs

girth (0, k) (1, k) (2, k) (3, k) (4, k)
3 × × × × ×
4 × × × × ×
5 × (1, 4 ≤ ? ≤ 10) (2, 6) (3, 5) (4, 4)
6 × (1, 4) (2, 2)
7 (0, 4) (1, 1)
8 (0, 2)

11 (0, 1)

Question (Montassier–Ochem 2014+)

Is every planar graph with girth 5 indeed (j , k)-colorable for all j + k ≥ 8?
– Is there some k where planar graphs with girth 5 are (1, k)-colorable?

Theorem (Choi–C.–Jeong–Suh 2014+)

Every planar graph with girth 5 is (1, 10)-colorable.

Theorem (Choi–C.–Jeong–Suh 2014+)

Every planar graph with girth 5 is (3, 4)-colorable.



Improper Coloring of Planar Graphs

girth (0, k) (1, k) (2, k) (3, k) (4, k)
3 × × × × ×
4 × × × × ×
5 × (1, 4 ≤ ? ≤ 10) (2, 6) (3, 5) (4, 4)
6 × (1, 4) (2, 2)
7 (0, 4) (1, 1)
8 (0, 2)

11 (0, 1)

Question (Montassier–Ochem 2014+)

Is every planar graph with girth 5 indeed (j , k)-colorable for all j + k ≥ 8?
– Is there some k where planar graphs with girth 5 are (1, k)-colorable?

Theorem (Choi–C.–Jeong–Suh 2014+)

Every planar graph with girth 5 is (1, 10)-colorable.

Theorem (Choi–C.–Jeong–Suh 2014+)

Every planar graph with girth 5 is (3, 4)-colorable.



Improper Coloring of Planar Graphs

Theorem (Choi–C.–Jeong–Suh 2014+)

Every planar graph with girth 5 is (1, 10)-colorable.

Proof: Discharging!

Assume there exists a counterexample......

Assign initial charge... µ(v) = d(v)− 6 and µ(f ) = 2l(f )− 6
Initial charge sum...∑

v

(d(v)− 6) +
∑
f

(2 · l(f )− 6) = −6v + 6e − 6f < 0

Discharging rules...

1

(R5)

1

(R6)

0

X1

(R7)

1
2

X2

(R8A)

1
2

not X1

(R7)

1

not X2

(R8B)

Show each element has nonnegative final charge...

CONTRADICTION!
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1

(R5)

1

(R6)

0

X1

(R7)

1
2

X2

(R8A)

1
2

not X1

(R7)

1

not X2

(R8B)

Show each element has nonnegative final charge...

CONTRADICTION!
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Improper Coloring of Planar Graphs

Thank you for your attention!


