3-coloring triangle-free planar graphs with a precolored 9-cycle

ILKYOO CHOI¹, Jan Ekstein², Přemysl Holub², Bernard Lidický¹

University of Illinois at Urbana-Champaign, USA

University of West Bohemia, Czech Republic

December 21, 2013

- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

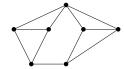
A graph G is k-critical if

- -G is not (k-1)-colorable
- for each subgraph H: H is (k-1)-colorable

- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

A graph G is k-critical if

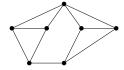
- -G is not (k-1)-colorable
- for each subgraph H: H is (k-1)-colorable



- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

A graph G is k-critical if

- -G is not (k-1)-colorable
- for each subgraph H: H is (k-1)-colorable



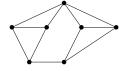
A graph G is C-critical for k-coloring if

- for each edge e, there is a k-coloring f_e of V(C) where
 - $-f_e$ extends to G-e
 - $-f_e$ does not extend to G

- for each vertex v: $f(v) \in [k]$
- for each edge xy: $f(x) \neq f(y)$

A graph G is k-critical if

- G is not (k-1)-colorable
- for each subgraph H: H is (k-1)-colorable

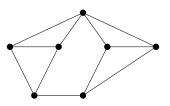


A graph G is C-critical for k-coloring if

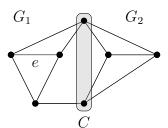
- for each edge e, there is a k-coloring f_e of V(C) where
 - $-f_e$ extends to G-e
 - $-f_{\rm e}$ does not extend to G

Observation

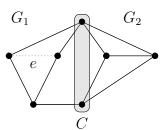
If G is (k+1)-critical, then G is \emptyset -critical for k-coloring.



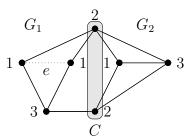
- not 3-colorable
- each subgraph is 3-colorable



- not 3-colorable
- each subgraph is 3-colorable



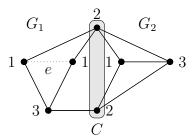
- not 3-colorable
- each subgraph is 3-colorable



- not 3-colorable
- each subgraph is 3-colorable

Observation

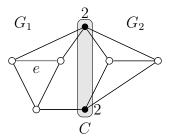
There exists a 3-coloring of V(C) that extends to G_1 – e but does not extend to G_1 .



- not 3-colorable
- each subgraph is 3-colorable

Observation

There exists a 3-coloring of V(C) that extends to G_1 – e but does not extend to G_1 .



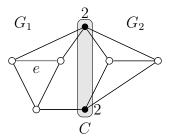
- not 3-colorable
- each subgraph is 3-colorable

Observation

There exists a 3-coloring of V(C) that extends to G_1 — e but does not extend to G_1 .

Observation

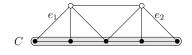
For every cut C and every $e \in V(G_1)$ exists a 3-coloring of V(C) that extends to G_1 – e but does not extend to G_1 .



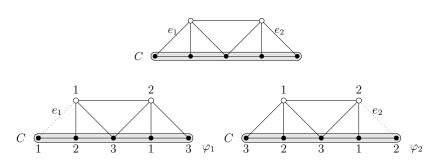
- not 3-colorable
- each subgraph is 3-colorable

A graph G is C-critical for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of V(C) that extends to G - e but does not extend to G.

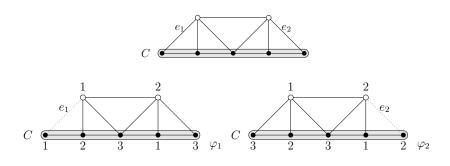
A graph G is C-critical for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of V(C) that extends to G - e but does not extend to G.



A graph G is C-critical for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of V(C) that extends to G - e but does not extend to G.



A graph G is C-critical for k-coloring if for each $e \in E(G)$, there exists a k-coloring f_e of V(C) that extends to G - e but does not extend to G.



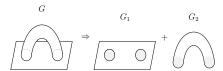
Observation

If G is (k+1)-critical, then G is \emptyset -critical for k-coloring.

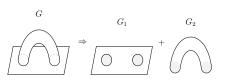
- Why *C*-critical? Which *C* is a good choice?

- Why C-critical? Which C is a good choice?
 - simplifying graphs on surfaces

- Why C-critical? Which C is a good choice?
 - simplifying graphs on surfaces



- Why *C*-critical? Which *C* is a good choice?
 - simplifying graphs on surfaces

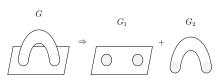


- Why *C*-critical? Which *C* is a good choice?
 - simplifying graphs on surfaces

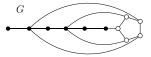


precolored tree

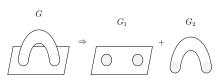
- Why *C*-critical? Which *C* is a good choice?
 - simplifying graphs on surfaces



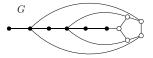
precolored tree



- Why C-critical? Which C is a good choice?
 - simplifying graphs on surfaces

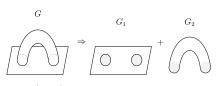


precolored tree

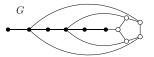


■ interior of a cycle

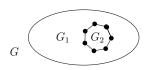
- Why C-critical? Which C is a good choice?
 - simplifying graphs on surfaces



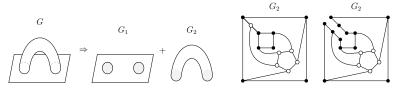
■ precolored tree



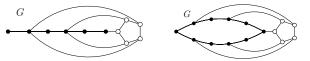
■ interior of a cycle



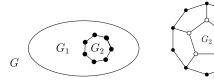
- Why C-critical? Which C is a good choice?
 - simplifying graphs on surfaces



■ precolored tree



■ interior of a cycle



If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all *C*-critical plane graphs of girth 4.

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all *C*-critical plane graphs of girth 4. *STILL OPEN!*

Easier goal: Characterize all C-critical plane graphs of girth 5.

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all *C*-critical plane graphs of girth 4. *STILL OPEN!*

Easier goal: Characterize all C-critical plane graphs of girth 5. SOLVED!

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

Easier goal: Characterize all C-critical plane graphs of girth 5. SOLVED!

- $|C| \le 11$ by Thomassen 2003 and Walls 1999
- |C| = 12 by Dvořák–Kawarabayashi 2011

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

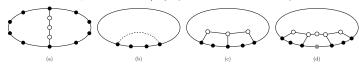
Focus: plane graphs that are *C*-critical for 3-coloring where *C* is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

Easier goal: Characterize all C-critical plane graphs of girth 5. SOLVED!

- $|C| \le 11$ by Thomassen 2003 and Walls 1999
- |C| = 12 by Dvořák–Kawarabayashi 2011

Recursive description for all |C| by Dvořák-Kawarabayashi 2011



If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to 3-coloring of G.

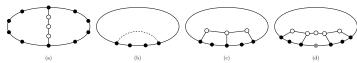
Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

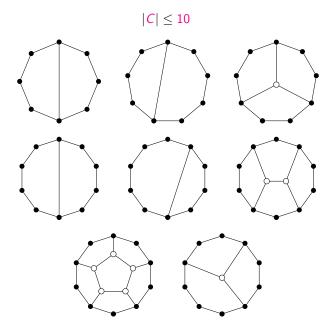
Easier goal: Characterize all C-critical plane graphs of girth 5. SOLVED!

- $|C| \le 11$ by Thomassen 2003 and Walls 1999
- |C| = 12 by Dvořák–Kawarabayashi 2011

Recursive description for all |C| by Dvořák-Kawarabayashi 2011



■ $|C| \le 16$ by Dvořák–Lidický 2013+



3-coloring triangle-free planar graphs with a precolored 9-cycle

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

Goal: Characterize all *C*-critical plane graphs of girth 4. *STILL OPEN!*

Known characterizations:

- $|C| \in \{4, 5\}$ by Aksenov 1974
- |C| = 6 by Gimbel–Thomassen 1997
- |C| = 6 by Aksenov–Borodin–Glebov 2003
- |C| = 7 by Aksenov–Borodin–Glebov 2004
- |C| = 8 by Dvořák–Lidický 2013+
- |C| = 9 by C.-Ekstein-Holub-Lidický 2014+

Theorem (Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to a 3-coloring of G.

Theorem (Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to a 3-coloring of G.

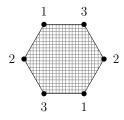
For $|C| \in \{4,5\}$, *NO* graphs are *C*-critical for 3-coloring! "nice" plane graph: has no separating 4-cycles or 5-cycles.

Theorem (Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or a 5-cycle extends to a 3-coloring of G.

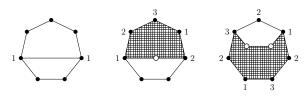
For $|C| \in \{4,5\}$, *NO* graphs are *C*-critical for *3*-coloring! "nice" plane graph: has no separating 4-cycles or 5-cycles.

Theorem (Gimbel–Thomassen 1997, Aksenov–Borodin–Glebov 2003)

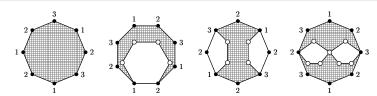


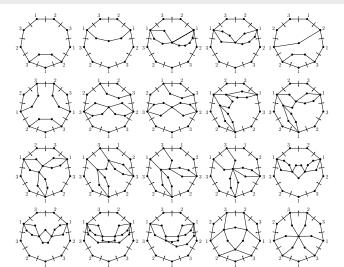
Theorem (Aksenov-Borodin-Glebov 2004)

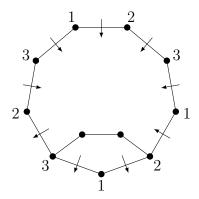
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 7, then G is C-critical if and only if G "looks like" a graph below.

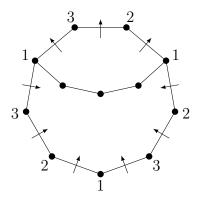


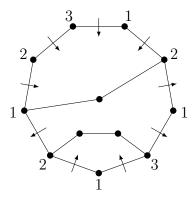
Theorem (Dvořák-Lidický 2013+)

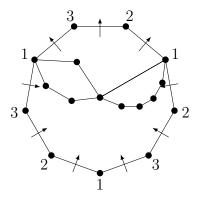


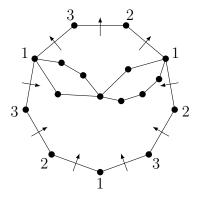


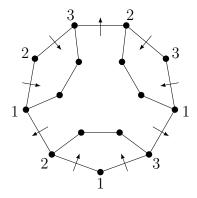


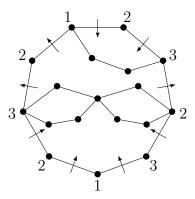


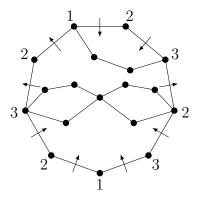


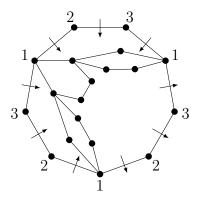


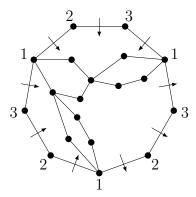


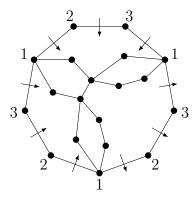


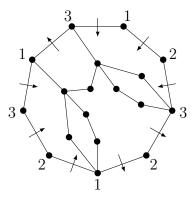


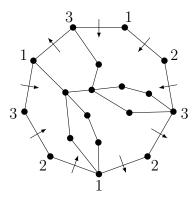


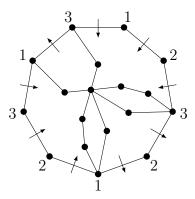


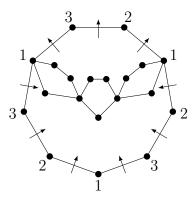


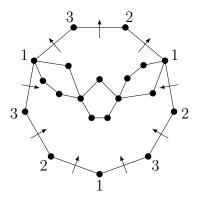


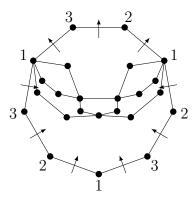


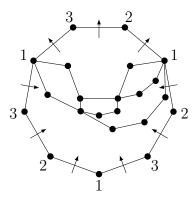


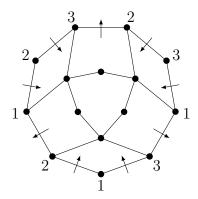


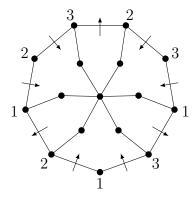












3-coloring triangle-free planar graphs with a precolored 9-cycle

Proof idea:

Proof idea:

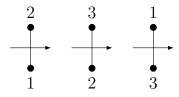
Theorem (Tutte 1954)

A plane graph G has a 3-coloring if and only if its dual G^* has a nowhere-zero \mathbb{Z}_3 -flow.

Proof idea:

Theorem (Tutte 1954)

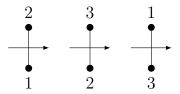
A plane graph G has a 3-coloring if and only if its dual G^* has a nowhere-zero \mathbb{Z}_3 -flow.



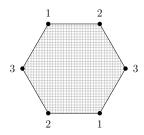
Proof idea:

Theorem (Tutte 1954)

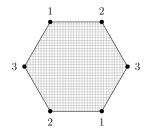
A plane graph G has a 3-coloring if and only if its dual G^* has a nowhere-zero \mathbb{Z}_3 -flow.



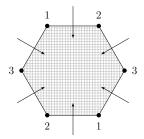
(In-edges - out-edges) of every face is a multiple of 3!



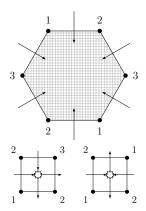
- (\Leftarrow) Need to show: coloring does not extend to G
 - coloring does extend to G e



- (\Leftarrow) Need to show: coloring does not extend to G
 - coloring does extend to G e



- (\Leftarrow) Need to show: coloring does not extend to G
 - coloring does extend to G e

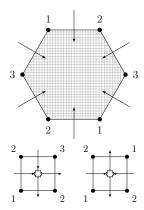


If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

- (\Leftarrow) Need to show: coloring does not extend to G

done!

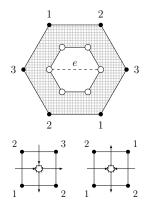
- coloring does extend to G - e



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

- (\Leftarrow) Need to show: coloring does not extend to G

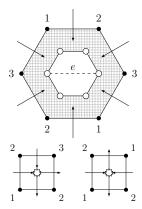
done!



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

- (\Leftarrow) Need to show: coloring does not extend to G

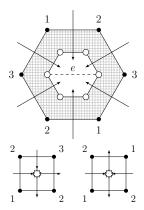
donel



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

- (\Leftarrow) Need to show: coloring does not extend to G

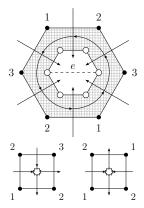
donel



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

- (\Leftarrow) Need to show: coloring does not extend to G

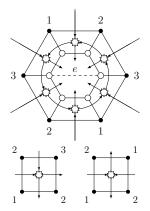
donel



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

- (\Leftarrow) Need to show: coloring does not extend to G

donel



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

 (\Leftarrow) Need to show: - coloring does not extend to G

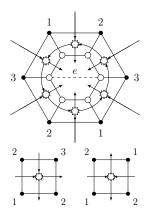
– coloring does extend to G - edone!

donel

If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

(\Leftarrow) Need to show: - coloring does not extend to G done! - coloring does extend to G - e done!

 (\Rightarrow) ?



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 6, then G is C-critical if and only if G "looks like" below.

```
(\Leftarrow) Need to show: — coloring does not extend to G — done! — coloring does extend to G-e — done! (\Rightarrow) done!
```

Corollary (Dvořák–Kráľ–Thomas 2014+)

If G is a "nice" plane graph of girth 4 bounded by a cycle ${\color{blue}C}$ of length c and is ${\color{blue}C}$ -critical, then

```
c = 6: \emptyset
c = 7: \{5\}
c = 8: \emptyset, \{6\}, \{5, 5\}
c = 9: \{7\}, \{5, 6\}, \{5, 5, 5\}, \{5\}
```

are the only possible multisets of faces of length at least 5.

Corollary (Dvořák–Kráľ–Thomas 2014+)

If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 and is C-critical, then

$$\{7\}, \{5,6\}, \{5,5,5\}, \{5\}$$

are the only possible multisets of faces of length at least 5.

Corollary (Dvořák–Kráľ–Thomas 2014+)

If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 and is C-critical, then

$$\{7\}, \{5,6\}, \{5,5,5\}, \{5\}$$

are the only possible multisets of faces of length at least 5.

Theorem (C.–Ekstein–Holub–Lidický 2014+)

If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

Corollary (Dvořák–Kráľ–Thomas 2014+)

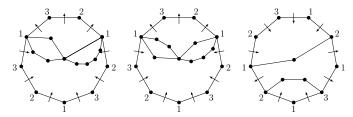
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 and is C-critical, then

$$\{7\}, \{5,6\}, \{5,5,5\}, \{5\}$$

are the only possible multisets of faces of length at least 5.

Theorem (C.-Ekstein-Holub-Lidický 2014+)

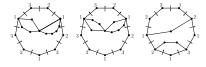
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.



If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

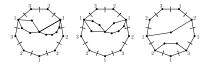


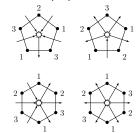
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.



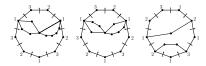
Proof: (\Rightarrow)

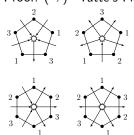
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

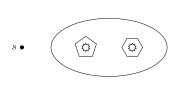




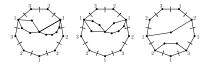
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

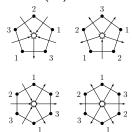


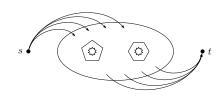




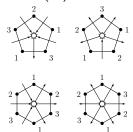
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

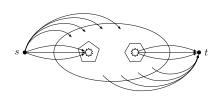




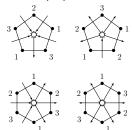


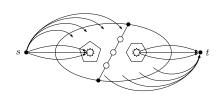
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.



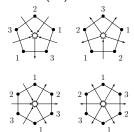


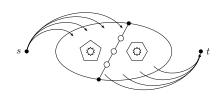
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.



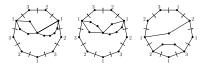


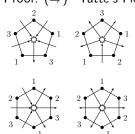
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

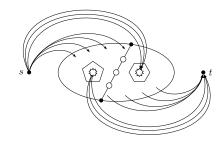




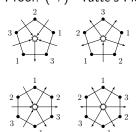
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

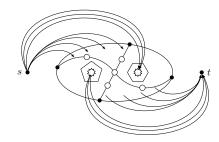




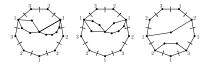


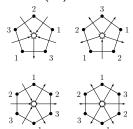
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

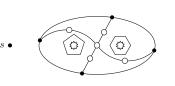




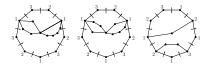
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.







If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

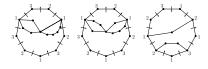


Proof: (\Leftarrow)

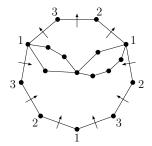
If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.

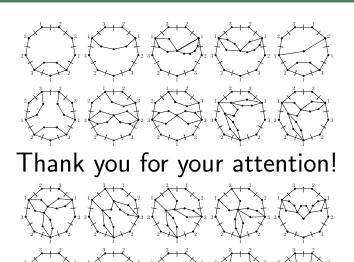
Proof: (\Leftarrow) Check each one!

If G is a "nice" plane graph of girth 4 bounded by a cycle C of length 9 containing a 5-face and a 6-face, then G is C-critical if and only if G "looks like" a graph below.



Proof: (\Leftarrow) Check each one!





Thank you for your attention!

