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a b s t r a c t

A graph is (d1, . . . , dr )-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr
where themaximum degree of the graph induced by Vi is at most di for each i ∈ {1, . . . , r}.
Let Gg denote the class of planar graphs with minimum cycle length at least g . We focus
on graphs in G5 since for any d1 and d2, Montassier and Ochem constructed graphs in G4
that are not (d1, d2)-colorable. It is known that graphs inG5 are (2, 6)-colorable and (4, 4)-
colorable, but not all of them are (3, 1)-colorable. We prove that graphs in G5 are (3, 5)-
colorable, leaving two interesting questions open: (1) are graphs inG5 also (3, d2)-colorable
for some d2 ∈ {2, 3, 4}? (2) are graphs in G5 indeed (d1, d2)-colorable for all d1 + d2 ≥ 8
where d2 ≥ d1 ≥ 1?

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let [n] = {1, . . . , n}. Only finite, simple graphs are considered. Given a graph G, let V (G) and E(G) denote the vertex set
and edge set of G, respectively. A neighbor of a vertex v is a vertex adjacent to v, and let N(v) denote the set of neighbors
of v. The degree of v, denoted by d(v), is |N(v)|. The degree of a face f , denoted by d(f ), is the length of a shortest boundary
walk of f . A k-vertex, k+-vertex, and k−-vertex are vertices of degree k, at least k, and at most k, respectively. A k-face, k+-face
is a face of degree k, at least k, respectively. The girth of a graph is the length of a shortest cycle.

A graph is (d1, . . . , dr)-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr where the maximum degree of
the graph induced by Vi is at most di for each i ∈ [r]; in other words, there exists a function f : V (G) → [r] where the graph
induced by vertices of color i has maximum degree at most di for i ∈ [r].

There aremany papers that study (d1, . . . , dr)-colorings of sparse graphs resulting in corollaries regarding planar graphs,
sometimes with restrictions on the length of a smallest cycle. The well-known four color theorem [1,2] is exactly the
statement that planar graphs are (0, 0, 0, 0)-colorable. Cowen, Cowen, and Woodall [7] proved that planar graphs are
(2, 2, 2)-colorable, and Eaton and Hull [8] and Škrekovski [11] proved that this is sharp by exhibiting non-(1, k, k)-colorable
planar graphs for each k. Thus, the problem is completely solved when r ≥ 3.

LetGg denote the class of planar graphswith girth at least g . Given any d1 and d2, consider the following graph constructed
by Montassier and Ochem [10]. Let Xi(d1, d2) be a copy of K2,d1+d2+1 where one part is {xi, yi}. Obtain Y (d1, d2) in the
followingway: startwithX1(d1, d2), . . . , Xd1+2(d1, d2) and identify x1, . . . , xd1+2 into x, and add the edges y1y2, . . . , y1yd1+2.
It is easy to verify that Y (d1, d2) is in G4 but it is not (d1, d2)-colorable.

Therefore, we focus on graphs in G5. There are also many papers [3,5,9,6,4,10] that investigate (d1, d2)-colorability for
graphs in Gg for g ≥ 6; see [10] for the rich history. For example, Borodin, Ivanova, Montassier, Ochem, and Raspaud [3]
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constructed a graph inG6 (and thus also inG5) that is not (0, k)-colorable for any k. The question of determining if there exists
a finite k where all graphs in G5 are (1, k)-colorable is not yet known and was explicitly asked in [10]. On the other hand,
Borodin and Kostochka [5] and Havet and Sereni [9], respectively, proved results that imply graphs inG5 are (2, 6)-colorable
and (4, 4)-colorable.

In this paper, we prove the following theorem, which is not implied by the aforementioned results.

Theorem 1.1. Planar graphs with girth at least 5 are (3, 5)-colorable.

This solves one of the previously unknown cases of the following question.

Question 1.2. Are planar graphs with girth at least 5 indeed (d1, d2)-colorable for all d1 + d2 ≥ 8 where d2 ≥ d1 ≥ 1?

The only remaining case of Question 1.2 is when d1 = 1 and d2 = 7. As mentioned before, interestingly enough, we do
not know even if there is a finite kwhere graphs in G5 are (1, k)-colorable.

Since there are non-(3, 1)-colorable graphs in G5 [10], Theorem 1.1 implies that the minimum dwhere graphs in G5 are
(3, d)-colorable is in {2, 3, 4, 5}; determining this d would be interesting.

In the figures throughout this paper, the white vertices do not have incident edges besides the ones drawn, and the black
vertices may have other incident edges.

In Section 2, we prove structural lemmas for non-(d1, d2)-colorable graphs with minimum order. In Section 3, we reveal
some more structures of minimum counterexamples to Theorem 1.1 by focusing on the case when d1 = 3 and d2 = 5.
Finally, we prove Theorem 1.1 by using a discharging procedure in Section 4.

2. Non-(d1, d2)-colorable graphs with minimum order

In this section, we prove structural lemmas regarding non-(d1, d2)-colorable graphs with minimum order; let H(d1, d2)
be such a graph. It is easy to see that the minimum degree of (a vertex of) H(d1, d2) is at least 2 and H(d1, d2) is connected.

Given a (partial) coloring f of H(d1, d2) and i ∈ [2], a vertex v with f (v) = i is i-saturated if v is adjacent to di neighbors
colored i. By definition, an i-saturated vertex has at least di neighbors.

Lemma 2.1. Let H = H(d1, d2)where d1 ≤ d2. If v is a 2-vertex of H, then v is adjacent to two (d1 +2)+-vertices, one of which
is a (d2 + 2)+-vertex.
Proof. LetN(v) = {v1, v2} and let f be a coloring ofH−v obtained by theminimality ofH . If f (v1) = f (v2), then letting f (v)
∈ [2]\{f (v1)} gives a coloring ofH , which is a contradiction.Without loss of generality, assume that f (v1) = 1 and f (v2) = 2.
Since setting f (v) = 1 must not give a coloring of H , we know v1 is 1-saturated. Since setting f (v1) = 2 and f (v) = 1 must
not give a coloring of H , we know v1 has a neighbor colored 2. This implies d(v1) ≥ d1 + 2. Similar logic implies that
d(v2) ≥ d2 + 2. �

Lemma 2.2. Let H = H(d1, d2) where 2 ≤ d1 ≤ d2. If v is a 3-vertex of H, then v is adjacent to at least two (d1 + 2)+-vertices,
one of which is a (d2 + 2)+-vertex.
Proof. Let N(v) = {v0, v1, v2} and let f be a coloring of H − v obtained by the minimality of H . If f (v0) = f (v1) = f (v2),
then letting f (v) ∈ [2] \ {f (v0)} gives a coloring of H , which is a contradiction. Without loss of generality, assume that f (v1)
= 1 and f (v2) = 2. Further assume that f (v0) = i for some i ∈ [2] and let j ∈ [2] \ {i}.

Since setting f (v) = j must not give a coloring of H , we know that vj is j-saturated. Since setting f (v) = j and f (vj) = i
must not give a coloring of H , we know that vj has a neighbor colored i. This implies d(vj) ≥ dj + 2. Since setting f (v) = i
must not give a coloring ofH , we know either v0 or vi is i-saturated. If both d(v0), d(vi) ≤ di+1, then recolor each i-saturated
vertex in {v0, vi} with color j, and set f (v) = i to obtain a coloring of H , which is a contradiction. Therefore either v0 or vi
has degree at least di + 2. �

Lemma 2.3. Let H = H(d1, d2) where d1 + 1 ≤ d2. If v is a (d1 + d2 + 1)−-vertex of H, then v is adjacent to at least one
(d1 + 2)+-vertex.
Proof. Suppose that no neighbor of v is a (d1 + 2)+-vertex and let f be a coloring of H − v obtained by the minimality of H .
Both colors 1 and 2 must appear on N(v); otherwise, we can easily obtain a coloring of H , which is a contradiction. Since
setting f (v) = 2must not give a coloring ofH and v cannot be adjacent to a 2-saturated vertex (since a 2-saturated neighbor
of v has degree at least d2 + 1 ≥ d1 + 2), we know that v has at least d2 + 1 neighbors colored 2. Since setting f (v) = 1
must not give a coloring of H , we know that either v has at least d1 + 1 neighbors colored 1 or v has a 1-saturated neighbor.
The former case is impossible because d(v) ≤ d1 + d2 + 1. Since each neighbor of v is a (d1 + 1)−-vertex, each 1-saturated
neighbor of v can be recolored with 2. Now we can let f (v) = 1 to obtain a coloring of H , which is a contradiction. �

Lemma 2.4. Let H = H(d1, d2) and let v be a 2-vertex of H where N(v) = {v1, v2} and d(v1) ≤ d2 + 1. If f is a coloring of
H − v, then f (v1) = 1 and f (v2) = 2.
Proof. If f (v1) = f (v2), then letting f (v) ∈ [2] \ {f (v1)} gives a coloring of H , which is a contradiction. If f (v1) = 2 and
f (v2) = 1, then let f (v) = 2 to obtain a coloring ofH , unless v1 is 2-saturated. This implies that d(v1) = d2 +1 and f (z) = 2
for z ∈ N(v1) \ {v}, so we can let f (v1) = 1 to obtain a coloring of H , which is a contradiction. �
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Fig. 1. The head h of a bad face b and a 2-vertex u1 that is close to a good face g .

3. Non-(3, 5)-colorable planar graphs with minimum order

From now on, let G be a counterexample to Theorem 1.1 with the fewest number of vertices and fix some embedding of
G on the plane. It is easy to see that the minimum degree of (a vertex of) G is at least 2 and G is connected.

A 5+-vertex is high, and a 3−-vertex is low. Recall that given a (partial) coloring f of G, a vertex v with f (v) = i is
i-saturated if v is adjacent to 2i + 1 neighbors colored i.

Lemma 3.1. Let u1u2u3u4 be a path in G where d(u2) = d(u4) = 2. If f is a coloring of G − u2 where f (u1) = f (u4) = 1 and
f (u3) = 2, then d(u3) ≥ 8.

Proof. Since setting f (u2) = 2 must not give a coloring of G, it must be that u3 is 2-saturated. Moreover, since setting
f (u2) = 2 and f (u3) = 1 must not give a coloring of G, we know that u3 has a neighbor colored with 1 that is not u4. This
implies d(u3) ≥ 8. �

Lemma 3.2. Let u1u2u3 be a path in G where d(u2) = 2 and d(u3) ≤ 9. If f is a coloring of G − u2 where f (u1) = 1 and
f (u3) = 2, then u3 has a high neighbor colored 1.

Proof. Since setting f (u2) = 2 must not give a coloring of G, it must be that u3 is 2-saturated. Moreover, since setting f (u2)
= 2 and f (u3) = 1 must not give a coloring of G, either u3 has 4 neighbors colored 1 or at least one 1-saturated neighbor.
The former is impossible since d(u3) ≤ 9, so u3 has some 1-saturated neighbors. If all such neighbors are not high, then we
can recolor each one with 2 and let f (u3) = 1 and f (u2) = 2 to complete a coloring of G, which is a contradiction. �

A bad face is a 5-face incident to two 2-vertices; a face is good if it is not bad.

Lemma 3.3. A 3-vertex cannot be incident to a bad face.

Proof. Follows immediately from Lemma 2.1 and the observation that a vertex on a bad face must be either a 2-vertex or a
neighbor of a 2-vertex. �

A vertex h is the head of a bad face b = hu1u2u3u4 if d(u1) = d(u4) = 2. Note that each bad face has exactly one head. A
2-vertex u1 incident to a bad face b is close to a good face g if u2u3 is a common edge of b and g and u, u2, u3 are high vertices
and u, u2, u3 are consecutive vertices of g and u1, u2, u3 are consecutive vertices of b. See Fig. 1.

A vertex v is chubby if either d(v) ∈ {7, 8, 9} and v has at least two high neighbors or d(v) ≥ 10. A vertex v is fat if either
d(v) ∈ {8, 9} and v has at least two high neighbors or d(v) ≥ 10 and v has at least one high neighbor. By definition, a fat
vertex is also chubby.

Lemma 3.4. Let f0 = x1v1vv2x2 be a bad face where d(v) = 2, d(v1) = 5, d(v2) ≥ 7. If f is a coloring of G− v, then f (v1) = 1
and f (v2) = 2, and one of the following holds:

(i) If v1 is the head of f0, then f (x1) = 1 and f (x2) = 2 and x2 and v2 are chubby vertices.
(ii) If v2 is the head of f0 and f (x1) = 2, then f (x2) = 1 and x1 is a fat vertex.
(iii) If v2 is the head of f0 and f (x1) = 1, then v1 has a 2-saturated neighbor.

Proof. By Lemma 2.4, f (v1) = 1 and f (v2) = 2. For i ∈ [2], since setting f (v) = imust not give a coloring of G, we know vi
is i-saturated.

(i) Since v1 is the head of f0, we know d(x1) = 2. If f (x1) = 2 so that f (z) = 1 for each z ∈ N(v1)\{v, x1}, then setting f (v1)
= 2 and f (v) = 1 is a coloring ofG, which is a contradiction. Thus f (x1) = 1. If f (x2) = 1, then letting f (v) = 1 and f (x1) = 2
is a coloring of G, which is a contradiction. Thus, f (x2) = 2. If d(v2) ∈ {7, 8, 9}, then by applying Lemma 3.2 to v1vv2, we
know that v2 must have two high neighbors; namely, x2 and a neighbor colored 1. Therefore, v2 is a chubby vertex.

Since d(x1) = 2 and d(v1) = 5, we know d(x2) ≥ 7 by Lemma 2.1. Now by letting f (v) = 1 and removing the coloring on
x1, the situation is symmetric for x2; this implies that x2 is a chubby vertex.

(ii) Since f (x1) = 2, we know f (z) = 1 for z ∈ N(v1) \ {v, x1}. If f (x2) = 2, then letting f (v) = 2 and f (x2) = 1 is a
coloring of G, which is a contradiction. Thus, f (x2) = 1. Since setting f (v) = 1 and f (v1) = 2 must not give a coloring of G,
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we know x1 is 2-saturated. Note that x1 has a high neighbor v1. Since setting f (v1) = 2 and f (v) = f (x1) = 1must not give a
coloring of G, we know that x1 has a neighbor colored 1 that is neither x2 nor v1. This implies d(x1) ≥ 8. If d(x1) ∈ {8, 9} and
every 1-saturated neighbor of x1 except v1 is a 4-vertex, then recolor each such neighbor with 2 (and let f (v1) = 2 and f (v)
= (x1) = 1) to obtain a coloring of G. Thus, if d(x1) ∈ {8, 9}, then x1 has two high neighbors; namely, v1 and another
neighbor colored 1. Thus, x1 is a fat vertex.

(iii) Since setting f (v) = 1 and f (v1) = 2must not give a coloring of G, we know v1 has either a 2-saturated neighbor or 6
neighbors colored 2. Since a 5-vertex v1 cannot have 6 neighbors of color 2, we know v1 has a 2-saturated neighbor. �

4. Discharging

Since the embedding of G is fixed, we can let F(G) denote the set of faces of this embedding. In this section, we will prove
that G cannot exist by assigning an initial chargeµ(z) to each z ∈ V (G)∪ F(G), and then applying a discharging procedure to
end upwith final chargeµ∗(z) at z. We prove that the final charge has nonnegative total sum, whereas the initial charge sum
is negative. The discharging procedure will preserve the total charge sum, and hence we find a contradiction to conclude
that the counterexample G does not exist.

For each z ∈ V (G) ∪ F(G), let µ(z) = d(z) − 4. The total initial charge is negative since
z∈V (G)∪F(G)

µ(z) =


z∈V (G)∪F(G)

(d(z) − 4) = −4|V (G)| + 4|E(G)| − 4|F(G)| = −8 < 0.

The last equality holds by Euler’s formula.
The rest of this section will prove that µ∗(z) is nonnegative for each z ∈ V (G) ∪ F(G).
Recall that a 5+-vertex is high, and a 3−-vertex is low. A bad face is a 5-face incident to two 2-vertices; a face is good if

it is not bad. A vertex h is the head of a bad face hu1u2u3u4 if d(u1) = d(u4) = 2. Note that each bad face has exactly one
head. A 2-vertex u1 incident to a bad face b is close to a good face g if u2u3 is a common edge of b and g and u, u2, u3 are
consecutive vertices of g and u1, u2, u3 are consecutive vertices of b, and u, u2, u3 are high vertices. See Fig. 1.

The discharging rules (R1)–(R5) are designed so that the faces and high vertices send their excess charge to low vertices.
(R6) and (R7) are different from (R1)–(R5) in that 2-vertices with enough charge send excess charge to other 2-vertices that
need more charge. (R7) is basically the same as (R6), except we make sure that there is no charge being bounced back and
forth between 2-vertices.

Here are the discharging rules:
(R1) Each bad face sends charge 1

2 to each incident 2-vertex.
(R2) Each good face sends charge 2

3 to each incident 2-vertex.
(R3) Each good face sends charge 1

12 to each incident 3-vertex.
(R4) Each good face sends charge 1

12 to each of its close 2-vertices.
(R5) Each high vertex distributes its initial charge uniformly to each adjacent low vertex.
(R6) Each 2-vertex v distributes its excess charge uniformly to each 2-vertex uwhere u and v are incident to the same bad

face.
(R7) Each 2-vertex v distributes its excess charge uniformly to each 2-vertex uwhere u and v are incident to the same bad

face and u did not send charge to v by (R6).

Fig. 2. Discharging rule (R6) and (R7).

See Fig. 2 for an illustration of (R7). We will first show that each face has nonnegative final charge. Then, we will show
that each vertex has nonnegative final charge.

Claim 4.1. Each bad face f has nonnegative final charge.

Proof. By definition, f is incident to two 2-vertices and has length 5. Since (R1) is the only rule that involves a bad face, it
follows that µ∗(f ) = 1 − 2 ·

1
2 = 0. �

Claim 4.2. Each good 5-face f has nonnegative final charge.

Proof. By definition, f is incident to at most one 2-vertex. Assume that f is incident to one 2-vertex v, which implies that
the two neighbors of v (which are both incident to f ) are high by Lemma 2.1. If f is incident to at least one 3-vertex, then f
has no close vertices, and thus, µ∗(f ) ≥ 1 −

2
3 − 2 ·

1
12 =

1
6 > 0. If f is incident to no 3-vertices, then f has at most four
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Table 1
Charge guaranteed from a high vertex.

d(v) 5 6 7 8 9 ≥ 10

Charge sent to an adjacent low vertex 1
4

2
5

3
6

4
7

5
8

6
10

close vertices, and thus, µ∗(f ) ≥ 1 −
2
3 − 4 ·

1
12 = 0.

Nowassume f is incident to no 2-vertices. If f is incident to i3-verticeswhere i ∈ {3, 4, 5}, then f has no close vertices, and
thus, µ∗(f ) = 1 − i · 1

12 ≥
7
12 > 0. If f is incident to two 3-vertices, then f has at most two close vertices, and thus µ∗(f )

≥ 1 − 4 ·
1
12 =

2
3 > 0. If f is incident to one 3-vertex, then f has at most four close vertices, and thus, µ∗(f ) ≥ 1 − 5 ·

1
12 =

7
12 > 0. If f is incident to no 3-vertices, then f has at most ten close vertices, and thus, µ∗(f ) ≥ 1 − 10 ·

1
12 =

1
6 > 0. �

Claim 4.3. Each 6+-face f has nonnegative final charge.
Proof. Note that by definition, f is a good face. We will first assign weights on each edge incident to f , and then shift some
of these weights to the low vertices incident to f . The initial charge of f will be distributed to incident low vertices and its
close vertices according to these weights. Since d(f ) ≥ 6, it follows that µ(f )

d(f ) =
d(f )−4
d(f ) ≥

1
3 , and thus, we can assign an initial

weight of at least 1
3 to each edge incident to f so that the sum of the weights is µ(f ).

Consider an edge e incident to f . If e is incident to exactly one low vertex v, then shift all of its weight to v. Now, each
2-vertex incident to f has weight at least 2 ·

1
3 since a 2-vertex cannot be adjacent to another low vertex by Lemma 2.1. Also,

each 3-vertex incident to f has weight at least 1
3 since a 3-vertex cannot be adjacent to two low vertices by Lemma 2.2. Note

that each close vertex of f corresponds to an edge (with weight at least 1
3 ) incident to f , and an edge corresponds to at most

two close vertices.
This shows that f has enough initial charge to send charge 2

3 to each incident 2-vertex, 1
3 > 1

12 to each incident 3-vertex,
and 1

3 ·
1
2 > 1

12 to each of its close vertices. �

Claim 4.4. Each high vertex v has nonnegative final charge.
Proof. Follows immediately since each high vertex has positive initial charge. �

Note that by Lemma2.3, each high vertexwith degree atmost 9 is adjacent to at least one high vertex. Table 1 summarizes
a lower bound on the amount of charge each high vertex is guaranteed to send to an adjacent low vertex.

Recall that a vertex v is chubby if either d(v) ∈ {7, 8, 9} and v has at least two high neighbors or d(v) ≥ 10. A vertex v is
fat if either d(v) ∈ {8, 9} and v has at least two high neighbors or d(v) ≥ 10 and v has at least one high neighbor.

A chubby vertex will send charge at least 3
5 to each low neighbor, and a fat vertex will send charge at least 2

3 to each low
neighbor.

Claim 4.5. Each 4-vertex v has nonnegative final charge.
Proof. Follows immediately since 4-vertices are not involved in the discharging rules. �

Claim 4.6. Each 3-vertex v has nonnegative final charge.
Proof. By Lemma 3.3, v is incident to three good faces. By Lemma 2.2, v is adjacent to at least two high vertices, one of which
is a 7+-vertex. Thus, µ∗(v) ≥ −1 + 3 ·

1
12 +

1
4 +

3
6 = 0. �

We split the argument that each 2-vertex has nonnegative final charge into two claims to improve the readability. Note
that any 2-vertex receives charge at least 2 ·

1
2 = 1 from the two incident faces.

Claim 4.7. Each 2-vertex v that is not incident to two bad faces has nonnegative final charge.
Proof. Let N(v) = {v1, v2}. By Lemma 2.1, we may assume d(v1) ≥ 5 and d(v2) ≥ 7. If v is not incident to a bad face, then
each face incident to v sends charge at least 2

3 . Thus, µ
∗(v) ≥ −2 + 2 ·

2
3 +

1
4 +

3
6 =

1
12 > 0.

Assume v is incident to exactly one bad face f0 = x1v1vv2x2 so that v receives charge 2
3 +

1
2 =

7
6 from its incident faces.

If d(v1) ≥ 6, then µ∗(v) ≥ −2 +
7
6 +

2
5 +

3
6 =

1
15 > 0, so assume that d(v1) = 5. If v1 is the head of f0, then by Lemma 3.4,

v2 is a chubby vertex. Thus, µ∗(v) ≥ −2 +
7
6 +

1
4 +

3
5 =

1
60 > 0.

So assume that v2 is the head of f0. Let f be a coloring of G − v obtained by the minimality of G. By Lemma 3.4 we know
f (v1) = 1 and f (v2) = 2. If f (x1) = 1, then Lemma 3.4 tells us that v1 has a 2-saturated neighbor, which is a high neighbor
(of v1) other than x1. Thus, µ∗(v) ≥ −2 +

7
6 +

1
3 +

3
6 = 0. If f (x1) = 2, then, by Lemma 3.4, x1 is a fat vertex and f (x2) = 1.

By Lemma 3.1, applied to v1vv2x2, we know d(v2) ≥ 8. Now, x2 gets charge at least 1 from its incident faces, at least 4
7 from

v2, and at least 2
3 from x1 since it is fat. Thus, the charge at x2 after (R5) will be at least −2 + 2 ·

1
2 +

2
3 +

4
7 =

5
21 . By (R6), x2

will send charge at least 5
42 to v. Now, µ∗(v) ≥ −2 +

7
6 +

1
4 +

4
7 +

5
42 =

3
28 > 0. �

Claim 4.8. Each 2-vertex v that is incident to two bad faces has nonnegative final charge.
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Fig. 3. Three subcases when d(v1) = 5.

Proof. Let N(v) = {v1, v2}. By Lemma 2.1, we may assume d(v1) ≥ 5 and d(v2) ≥ 7. If d(v1) ≥ 7, then µ∗(v) ≥ −2 + 1
+ 2 ·

1
2 = 0; so assume d(v1) ≤ 6.

Let f1 = x1v1vv2x2 and f2 = y1v1vv2y2 be the two bad faces incident to v. Let f be a coloring of G − v obtained by the
minimality of G. By Lemma 2.4, f (v1) = 1 and f (v2) = 2. For i ∈ [2], setting f (v) = i must not give a coloring of G, so we
know vi is i-saturated.

Case 1: the faces f1 and f2 have the same head.
(i) Assume v1 is the head of both f1 and f2. Note that v2 has two high neighbors. If d(v1) = 6, thenµ∗(v) ≥ −2+1+

2
5 +

3
5 =

0; so assume d(v1) = 5. If d(v2) ≥ 10, then µ∗(v) ≥ −2 + 1 +
1
4 +

6
8 = 0. By Lemma 3.4, it must be the case that

f (xi) = f (vi) = f (yi) = i for i ∈ [2]. If d(v2) ∈ {7, 8, 9}, then Lemma 3.2 applied to v1vv2 tells us that v2 has three high
neighbors, which are x2, y2, and a high neighbor colored 1. Thus, µ∗(v) ≥ −2 + 1 +

1
4 +

3
4 = 0.

(ii) Assume that v2 is the head of both f1 and f2. Note that v1 has two high neighbors x1 and y1. If d(v1) = 6, then
µ∗(v) ≥ −2+1+

2
4 +

3
6 = 0, so assume d(v1) = 5. If f (x1) = f (y1) = 1, then v1 has a high neighbor that is neither x1 nor

y1 by Lemma 3.4. Thus,µ∗(v) ≥ −2+1+
1
2 +

3
6 = 0.Without loss of generality assume that f (x1) = 2. By Lemma 3.4, x1

is a fat vertex and f (x2) = 1. Therefore, by Lemma 3.1 applied to v1vv2x2, d(v2) ≥ 8. Now x2 gets charge at least 1 from
its incident faces, at least 4

7 from v2, and at least 2
3 from x1 since it is fat. Thus, the charge at x2 after (R5) will be at least

−2+ 1+
2
3 +

4
7 =

5
21 . By (R6), v will receive charge at least 5

42 from x2. Thus, µ∗(v) ≥ −2+ 1+
1
3 +

4
7 +

5
42 =

1
42 > 0.

Case 2: the faces f1 and f2 have different heads. Without loss of generality, assume that vi is the head of fi for i ∈ [2]. Note
that each vertex in {v1, v2} has at least one high neighbor.
(i) Assume that d(v1) = 6. Since letting f (v) = 1 and f (v1) = 2must not give a coloring of G, we know v1 has a 2-saturated

neighbor (a 6-vertex v1 cannot have six neighbors of color 2 since v has color 1). If f (y1) = 1, then v1 has two high neigh-
bors, which means v1 gives charge at least 2

4 to v, so we are done since µ∗(v) ≥ −2 + 1 +
2
4 +

3
6 = 0. So f (y1) = 2

and v1 has only one high neighbor y1. It must be that f (y2) = 1, since otherwise set f (v) = 2 and f (y2) = 1 to obtain
a coloring of G. By Lemma 3.1 applied to v1vv2y2, we know d(v2) ≥ 8. Since setting f (v) = 1 and f (v1) = 2 must not
give a coloring of G, we know that y1 is 2-saturated. Also, since setting f (v) = f (y1) = 1 and f (v1) = 2 must not give
a coloring of G, we know that y1 has a neighbor colored 1 that is neither y2 nor v1. Thus, d(y1) ≥ 8. Now y2 gets charge
at least 1 from its incident faces and at least 4

7 from each of v2 and y1. Thus, the charge at y2 after (R5) will be at least
−2 + 1 + 2 ·

4
7 =

1
7 . By (R6), y2 will send charge at least 1

14 to v. Thus, µ∗(v) ≥ −2 + 1 +
2
5 +

4
7 +

1
14 =

3
70 > 0.

(ii) Assume d(v1) = 5. By Lemma 3.4, we know that f (x1) = 1 and f (x2) = 2 and x2, v2 are chubby vertices.
(a) If f (y1) = 2, then we know y1 is a fat vertex and f (y2) = 1 by Lemma 3.4. By Lemma 3.1 applied to v1vv2y2, we

know d(v2) ≥ 8. Since (a chubby vertex) v2 has a high neighbor x2 and d(v2) ≥ 8, it follows that v2 is a fat vertex.
Thus, v2 and y1 each sends charge at least 2

3 to each bad neighbor. Thus, the charge at y2 after (R5) will be at least
−2 + 1 +

2
3 +

2
3 =

1
3 . By (R6), y2 sends charge at least 1

6 to v. Thus, µ∗(v) ≥ −2 + 1 +
1
4 +

2
3 +

1
6 =

1
12 > 0.

(b) If f (y1) = 1, we know, v1 has a 2-saturated (high) neighbor z by Lemma 3.4. If z, v1, y1 are consecutive vertices
of a face f3, then v is a close 2-vertex of f3, which is clearly a good face. By (R4), f3 will give charge 1

12 to v. Thus,
µ∗(v) ≥ −2 + 1 +

1
12 +

1
3 +

3
5 =

1
60 > 0.

Now consider the casewhere z, v1, x1, x2 are consecutive vertices of a face f0. If f0 is not a bad face, then the charge at x1 after
(R5)will be at least−2+

1
2 +

2
3 +

1
3 +

3
5 =

1
10 . By (R6), x1 will send charge at least 1

10 to v; thus,µ∗(v) ≥ −2+1+
1
3 +

3
5 +

1
10 =

1
30 > 0. So f0 is a bad face wzv1x1x2, which further implies that x2 is the head of f0. By letting f (v) = 1 and erasing the color
on x1, we can apply Lemma 3.4 to f0 to conclude that z is a fat vertex and f (w) = 1. By Lemma 3.1 applied to v1x1x2w, we
know d(x2) ≥ 8. Since (a chubby vertex) x2 has a high neighbor v2 and d(x2) ≥ 8, it follows that x2 is a fat vertex.

Now, after (R5), w will have charge at least −2+ 1+ 2 ·
2
3 =

1
3 and x1 will have charge at least −2+ 1+

1
3 +

2
3 = 0 and

v will have charge at least −2 + 1 +
1
3 +

3
5 = −

1
15 . By (R6), w sends charge at least 1

6 to x1, so the charge at x1 is at least 1
6

after (R6). If the charge at v is still negative after (R6), then v could not have sent charge to w by (R6). Since w sent charge
to x1, by (R7), x1 will send all of its excess charge to v. Thus, after (R7), v will have charge at least −

1
15 +

1
6 =

1
10 > 0 (see

Fig. 3). �
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