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a b s t r a c t

The vertex arboricity a(G) of a graph G is the minimum k such that V (G) can be partitioned
into k sets where each set induces a forest. For a planar graph G, it is known that a(G) ≤ 3.
In two recent papers, it was proved that planar graphs without k-cycles for some k ∈

{3, 4, 5, 6, 7} have vertex arboricity at most 2. For a toroidal graph G, it is known that
a(G) ≤ 4. Let us consider the following question: do toroidal graphs without k-cycles have
vertex arboricity at most 2? It was known that the question is true for k = 3, and recently,
Zhang proved the question is true for k = 5. Since a complete graph on 5 vertices is a
toroidal graph without any k-cycles for k ≥ 6 and has vertex arboricity at least three, the
only unknown case was k = 4. We solve this case in the affirmative; namely, we show that
toroidal graphs without 4-cycles have vertex arboricity at most 2.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let [n] = {1, . . . , n}. Only finite, simple graphs are considered. Given a graph G, let V (G) and E(G) denote the vertex set
and edge set of G, respectively. The vertex arboricity of a graph G, denoted a(G), is the minimum k such that V (G) can be
partitioned into k sets V1, . . . , Vk where G[Vi] is a forest for each i ∈ [k]. This can be viewed as a vertex coloring f with k
colors where each color class Vi induces a forest; namely, G[f −1(i)] is an acyclic graph for each i ∈ [k]. The girth of a graph
G is the length of the smallest cycle in G. Note that a graph with no cycles is a forest, and it has vertex arboricity 1.

Vertex arboricity, also known as point arboricity, was first introduced by Chartrand, Kronk, and Wall [2] in 1968.
Among other things, they proved Theorem 1.1. Shortly after, Chartrand and Kronk [1] showed that Theorem 1.1 is sharp
by constructing a planar graph with vertex arboricity 3, and they also proved Theorem 1.2.

Theorem 1.1 ([2]). If G is a planar graph, then a(G) ≤ 3.

Theorem 1.2 ([1]). If G is an outerplanar graph, then a(G) ≤ 2.

Wedirect the readers to thework of Stein [10] andHakimi and Schmeichel [5] for a complete characterization ofmaximal
plane graphs with vertex arboricity 2.

In 2008, Raspaud and Wang [9] not only determined the order of the smallest planar graph G with a(G) = 3, but
also found several sufficient conditions for a planar graph to have vertex arboricity at most 2 in terms of forbidden small
structures; namely, they proved that a planar graph with either no triangles at distance less than 2 or no k-cycles for some
fixed k ∈ {3, 4, 5, 6} has vertex arboricity at most 2. Chen, Raspaud, and Wang [3] showed that forbidding intersecting
triangles is also sufficient for planar graphs. In [9], Raspaud and Wang asked the following question:
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Question 1.3 ([9]). What is the maximum integer µ where for all k ∈ {3, . . . , µ}, a planar graph G with no k-cycles has
a(G) ≤ 2?

Raspaud andWang’s results imply 6 ≤ µ ≤ 21. The lower bound was increased to 7 by Huang, Shiu, andWang [6] since
they proved planar graphs without 7-cycles have vertex arboricity at most 2.

We completely answer the question for toroidal graphs, which are graphs that are embeddable on a torus with no
crossings.

Kronk [7] and Cook [4] investigated vertex arboricity on higher surfaces in 1969 and 1974, respectively.

Theorem 1.4 ([7]). If G is a graph embeddable on a surface of positive genus g, then a(G) ≤ ⌊
9+

√
1+48g
4 ⌋.

Theorem 1.5 ([4]). If G is a graph embeddable on a surface of genus g with no 3-cycles, then a(G) ≤ 2 +
√
g.

Theorem 1.6 ([4]). If G is a graph embeddable on a surface of positive genus g with girth at least 5 + 4 log3 g, then a(G) ≤ 2.

Theorem 1.4 says every toroidal graph G has a(G) ≤ 4. Theorem 1.5 says a toroidal graph with no 3-cycles has vertex
arboricity atmost 3, and Theorem1.6 only guarantees that toroidal graphswith girth at least 5 have vertex arboricity atmost
2. Both of these cases were improved by Kronk and Mitchem [8] who showed Theorem 1.7. Recently, Zhang [11] showed
Theorem 1.8, which says that forbidding 5-cycles in toroidal graphs is sufficient to guarantee vertex arboricity at most 2.

Theorem 1.7 ([8]). If G is a toroidal graph with no 3-cycles, then a(G) ≤ 2.

Theorem 1.8 ([11]). If G is a toroidal graph with no 5-cycles, then a(G) ≤ 2.

Since the complete graph on 5 vertices is a toroidal graph with no cycles of length at least 6 and has vertex arboricity 3,
the only remaining case is when 4-cycles are forbidden in toroidal graphs; this is our main result.

Theorem 1.9. If G is a toroidal graph with no 4-cycles, then a(G) ≤ 2.

In Section 2, we will prove some structural lemmas needed in Section 3, where we prove Theorem 1.9 using (simple)
discharging rules. Note that Theorem 1.9 implies that every planar graph without 4-cycles have vertex arboricity at most 2,
which is a result in [9].

2. Lemmas

From now on, let G be a counterexample to Theorem 1.9 with the fewest number of vertices. It is easy to see that Gmust
be 2-connected and the minimum degree of a vertex of G is at least 4.

A graph is k-regular if every vertex in the graph has degree k. A set S ⊆ V (G) of vertices is k-regular if every vertex in
S has degree k in G. A triangular cycle is a cycle adjacent to a triangle. A (partial) 2-coloring f of G is good if each color class
induces a forest.

Lemma 2.1. If V (G) contains a 4-regular set S where G[S] is a cycle C, then every good coloring f of G[V (G) \ S] that does not
extend to all of G has either

Case 1: f (v) the same for every vertex v ∉ S that has a neighbor in S, or
Case 2: f (x) ≠ f (y) for all v ∈ S such that N(v) \ S = {x, y} and C is an odd cycle.

Proof. Let S = {v1, . . . , vs}where v1, . . . , vs are the vertices of C in this order. For each i ∈ [s], letN(vi)\S = {xi, yi}. Obtain
a good coloring f of G[V (G) \ S] by the minimality of G. We will show that if f does not satisfy one of the two conditions in
the statement, then f can be extended to all of G.

If s is even and {f (xi), f (yi)} = {1, 2} for each i ∈ [s], then let f (vi) =


1 if i is odd
2 if i is even to extend f to all of G.

We know that there exists at least one index j ∈ [s] with f (xj) = f (yj) since we are not in Case 2. For each i ∈ [s] with

f (xi) = f (yi), let f (vi) =


1 if f (xi) = f (yi) = 2
2 if f (xi) = f (yi) = 1 . Now, consider the vertices of C in cyclic order starting with i = j, and for f (vi)

that is not defined yet, let f (vi) =


1 if f (vi−1) = 2
2 if f (vi−1) = 1 for all i. We claim that this coloring f is now a good coloring of all of G,

which is a contradiction.
Note that f cannot have a monochromatic cycle that only uses vertices of V (G) \ S. Also, f cannot have a monochromatic

cycle where xi, vi, yi are consecutive vertices on this cycle since f (xi) = f (vi) = f (yi) never happens. Moreover, f cannot
have a monochromatic cycle where vi, vi+1, xi are consecutive vertices on this cycle since f (vi) = f (vi+1) implies that
f (xi+1) = f (yi+1) ≠ f (vi+1). Thus, a monochromatic cycle in f must be C itself, which is possible only in Case 1. �

Lemma 2.2. V (G) does not contain a 4-regular set S where G[S] is a triangular cycle.
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Fig. 1. Forbidden configuration. The white vertices do not have incident edges besides the ones drawn.

Fig. 2. The cycle C in the proof of Claim 2.3 (left) and the corresponding graph in G (right). The white vertices do not have incident edges besides the ones
drawn. The black vertices may have other incident edges.

Proof. Let S = {v1, . . . , vs, u}, so that u, v1, v2 are the vertices of a triangle and let C = S \{u}. Let v1, . . . , vs be the vertices
of C in this order. For i ∈ [2], let v′

i be the neighbor of vi that is not in S. We will obtain a good coloring of G to show that S
does not exist. Obtain a good coloring f of G[V (G) \ C] by the minimality of G.

Assume that the first case of Lemma 2.1 happens and without loss of generality, assume f (v) = 1 for every vertex v ∉ C
that has a neighbor in C . For i ∈ [s] \ {1}, let f (vi) = 2 and let f (v1) = 1. If f is not a good coloring, then in the graph induced
by f −1(1), there must exist a cycle where v′

1, v1, u, z are consecutive vertices on the cycle for some z ∈ N(u)\{v1, v2}. Now,
alter f by letting f (u) = 2 to obtain a good coloring of all of G.

Assume that the second case of Lemma 2.1 happens and without loss of generality, assume f (v′

1) = f (v′

2) = 1 and

f (u) = 2. Note that s must be odd. For i ∈ [s] \ {1}, let f (vi) =


1 if i is odd
2 if i is even , let f (v1) = 2, and change f (u) from 2 to 1. If

f is not a good coloring, then in the subgraph induced by f −1(1), there must exist a cycle where u and two of its neighbors
that are not v1, v2 are consecutive vertices on the cycle. Now for i ∈ [s] \ {1}, alter f by letting f (vi) =


2 if i is odd
1 if i is even (but

keep f (u) = 2) to obtain a good coloring of all of G (see Fig. 1). �

Let a vertex v be bad if d(v) = 4 and v is incident to two triangles; a vertex is good if it is not bad. Let H = H(G) be the
graph where V (H) is the set of triangles of G incident to at least one bad vertex and let uv ∈ E(H) if and only if there is a
bad vertex of G that is incident to both triangles that correspond to u, v. Note that a vertex in H has at most three neighbors.

Claim 2.3. Each component of H is either a cycle or a tree.

Proof. Assume for the sake of contradiction that H has a component Dwith a cycle C where C is not the entire component.
Let v ∈ V (D) \ V (C) be a vertex that has a neighbor in V (C). The graph in G that corresponds to this structure is forbidden
by Lemma 2.2, which is a contradiction. See Fig. 2. �

Here is a lemma that will help later on.

Lemma 2.4. Every n-vertex tree with maximum degree 3 has exactly 2 more vertices of degree 1 than vertices of degree 3.

Proof. Let zi be the number of vertices of degree i. An n-vertex tree has n − 1 edges and the sum of the degrees is twice the
number of edges. Thus we have n = z1 + z2 + z3 and 2(n − 1) = z1 + 2z2 + 3z3. By eliminating z2, we get z1 = z3 + 2. �
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3. Discharging

In this section, we will prove that G cannot exist. Fix an embedding of G and let F(G) be the set of faces. We assign an
initial chargeµ(z) to each z ∈ V (G)∪F(G), and thenwewill apply a discharging procedure to end upwith final chargeµ∗(z)
at z. We prove that the final charge has positive total sum, whereas the initial charge sum is at most zero. The discharging
process will preserve the total charge sum, and hence we find a contradiction to conclude that G does not exist.

For every vertex v ∈ V (G), let µ(v) = d(v)−6, and for every face f ∈ F(G), let µ(f ) = 2d(f )−6. The total initial charge
is at most zero since

z∈V (G)∪F(G)

µ(z) =


v∈V (G)

(d(v) − 6) +


f∈V (F)

(2d(f ) − 6) = 6|E(G)| − 6|V (G)| − 6|F(G)| ≤ 0.

The final equality holds by Euler’s formula.
For the discharging procedure we introduce the notion of a bank, which serves as a placeholder for charges. For each

component D of the auxiliary graph H(G), we will define a separate bank; let b(D) denote the bank. We give each bank an
initial charge of zero andwewill show that either some vertex or some bank has positive final charge. The rest of this section
will prove that the sum of the final charge after the discharging phase is positive.

Recall that a vertex v is bad if d(v) = 4 and v belongs to two triangles and a vertex is good if it is not bad. A good vertex
v is incident to a bank b(D) if there is a vertex u of Dwhere v is incident to the triangle in G that corresponds to u. Note that
each bad vertex of G is an edge of H(G).

Here are the discharging rules:

(R1) Each face distributes its initial charge uniformly to each incident vertex.
(R2) Each good vertex v sends charge 2

5 to each bank b(D) each time v is incident to b(D).
(R3) For each component D of H(G), the bank b(D) sends charge 2

5 to each bad vertex in G that corresponds to an edge in D.

It is trivial that each face has nonnegative final charge.Moreover, each face f with d(f ) ≥ 5 sends charge µ(f )
d(f ) =

2d(f )−6
d(f ) ≥

4
5 to each incident vertex. We will first show that each vertex has nonnegative final charge. Then we will show that either
some bank or some vertex has positive final charge.

Note that since G has no 4-cycles, each vertex v is incident to at most ⌊ d(v)

2 ⌋ triangles, and therefore at most ⌊ d(v)

2 ⌋ banks.

Claim 3.1. Each vertex has nonnegative final charge. Moreover, each vertex of degree at least 5 has positive final charge.

Proof. A vertex v with d(v) ≥ 6 has nonnegative initial charge and receives at least 4
5 ·

d(v)

2 after (R1). Since v is incident to
at most ⌊

d(v)

2 ⌋ incident banks, µ∗(v) ≥
4
5 ·

d(v)

2 −
2
5 · ⌊

d(v)

2 ⌋ > 0. A vertex v with d(v) = 5 will receive charge from at least
3 incident faces and will give charge to at most 2 incident banks. Therefore, µ∗(v) ≥ −1 + 3 ·

4
5 − 2 ·

2
5 > 0.

A good vertex v with d(v) = 4 will receive charge from at least 3 faces and will give charge to at most one incident bank.
Therefore, µ∗(v) ≥ −2+ 3 ·

4
5 −

2
5 = 0. A bad vertex v will receive charge at least 4

5 from two faces and 2
5 from exactly one

bank. Therefore, µ∗(v) ≥ −2 + 2 ·
4
5 +

2
5 = 0. �

Given a component D ofH(G), since an edge of D corresponds to a bad vertex of G, we need to check that b(D) has enough
charge for each edge of D.

Claim 3.2. Each bank b(D) where D is a cycle has nonnegative final charge.

Proof. Assume D is a cycle C with n vertices. Since D is a cycle, each triangle in G that corresponds to a vertex in D must
be incident to one good vertex; each good vertex will send charge 2

5 to b(D). Thus, b(D) receives charge 2
5n and there are n

edges in D so b(D) has nonnegative final charge. �

Claim 3.3. Each bank b(D) where D is a tree has positive final charge.

Proof. Assume D is a tree T with n vertices. T has maximum degree at most 3 since a triangle in G cannot be incident to
more than three bad vertices. For i ∈ [3], let zi be the number of vertices of degree i in T .

Each triangle in G that corresponds to a degree 1 vertex in T is incident to 2 good vertices, and each triangle in G that
corresponds to a degree 2 vertex in T is incident to 1 good vertex. Thus b(T ) gets charge 4

5 z1 +
2
5 z2, and must spend

2
5 |E(T )| =

2
5 (n − 1). Since z1 = z3 + 2 by Lemma 2.4, it follows that 4

5 z1 +
2
5 z2 =

2
5n +

4
5 > 2

5n −
2
5 . Thus, b(T ) has

positive final charge. �

If H(G) has a component that is a tree T , then b(T ) has positive final charge. If H(G) has a component that is a cycle, then
there exists a vertex of degree at least 5 in G (by Lemma 2.2), and by Claim 3.1, this vertex has positive final charge.

If H(G) has no components, then there are neither any banks nor bad vertices. Let v be a good vertex in this case. If
d(v) ≥ 5, then v has positive final charge by Claim 3.1. Otherwise, d(v) = 4 and v will receive charge from at least 3 faces
by (R1), thus, the final charge of v is at least 3 ·

4
5 − 2 > 0.
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