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a b s t r a c t

A cop wants to locate a robber hiding among the vertices of a graph. A round of the game
consists of the robber moving to a neighbor of its current vertex (or not moving) and then
the cop scanning some vertex to obtain the distance from that vertex to the robber. If the
cop can at some point determine where the robber is, then the cop wins; otherwise, the
robberwins.Weprove that the robberwins on graphswith girth atmost 5.Wealso improve
the bounds on a problem of Seager by showing that the cop wins on a subdivision of an
n-vertex graph G when each edge is subdivided into a path of length m, where m is the
minimum of n and a quantity related to the ‘‘metric dimension’’ of G. We obtain smaller
thresholds for complete bipartite graphs and grids.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We study a pursuit–evasion game on a graph H . The evader (the robber) moves among the vertices of the graph, moving
distance 0 or 1 in each round. After a robber move, the pursuer (the cop) completes the round by scanning a vertex in the
graph and learning the distance from that vertex to the location of the robber. If the cop can then determine that location,
the cop wins. If the robber can avoid this forever, then the robber wins. Winning does not require the cop to scan the vertex
where the robber is.

Our model is like that of Seager [12], but her model also forbids the robber from moving to the vertex scanned in the
previous round. We call this the no-backtrack condition; it makes the cop stronger. Hence our sufficient conditions for the
cop to win are also sufficient in Seager’s model. In Section 5 we provide some sufficient conditions for the robber to win;
these do not apply to Seager’s model.

Pursuit games on graphs were introduced by Parsons in [11] and have been studied extensively under various names
(searching, sweeping, clearing, hunter/rabbit, etc.). Parsons’ original problem involves one omniscient evader and pursuers
who learn nothing about the evader’s location except by occupying the same vertex as the evader. A variant where the cop
and robber know each other’s locations and the copmust land on the robber to win is studied in [10]. Another variant where
the robber can move any distance along paths without cops is related to treewidth [13]. A randomized algorithm for cops
and robbers with limited visibility is described in [6]. Surveys describing other variants include [1,3].

In contrast to thesemodels, in our problem the cop is never actually on the graph. The copmay scan any vertex, remotely.
Winning means only that the cop has determined the vertex where the robber must be, not that the cop has captured the
robber. Models involving distance information could arise in the setting of sensors in a network (see [8]).
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Seager [12] proved that under the no-backtrack condition, the copwins on cycles other than the 5-cycle and on trees. She
also proved structural theorems: the robber wins on any graph containing K4 as a subgraph or K3,3 as an induced subgraph.
She also considered whether for any graph G, the copwins on some subdivision of G. A referee of our paper provided an easy
argument that we include here as Proposition 1.1.

A thread in a graph is a path whose internal vertices have degree 2. The operation of m-subdivision replaces each edge
in a graph with a thread of length m through new vertices; the notation for the resulting graph is G1/m. (To motivate the
notation G1/m, note that m-subdivision pushes vertices of G farther apart, whereas the distance power Gm adds edges to
reduce distances between vertices of G.) For convenience in this argument, we temporarily use ‘‘branch vertex’’ to mean a
vertex of G1/m that corresponds directly to a vertex of G.
Proposition 1.1. For any graph G with n vertices, the cop wins on G1/(3n).
Proof. Scanning the branch vertices in turn eventually yields a branch vertex v from which the distance to the robber is
less than 2n at that moment. During the next n rounds the robber remains at distance less than 3n from v. Scanning the
branch vertices corresponding to neighbors of v in Gwill locate the robber. If a scan at u returns distance less than 3n, then
the robber is located within the thread from u to v. Moving to another one of these threads requires the robber to pass
through v, at which point the distance from any neighboring branch vertex will be exactly 3n and the robber will be located
at v. �

This argument raises the natural problem of reducing the bound on m in the m-subdivision where the cop wins. We
improve the general bound and provide even smaller bounds for some special graphs. The argument of Proposition 1.1
motivates our strategy for the cop. Scanning a special set finds candidates for a branch vertex z such that the robber stays
within distance m of z during the first m rounds. Next, scanning the candidates produces a branch vertex within distance
m of the robber. Finally, the last (repeatable) phase locates the robber or selects another branch vertex that the robber is
now closer to. Care is needed because using shorter threads may allow the robber to escape from the union of the threads
incident to z before being located.

We prove that if m exceeds both the maximum degree ∆(G) and a quantity involving the number of vertices of G
that can arise as candidates, then the cop wins on G1/m. Thus the cop wins when m = n, but in general the bound
is smaller. For W = {w1, . . . , wk} ⊆ V (G) and v ∈ V (G), the distances in G from v to w1, . . . , wk form a k-tuple
(dG(v, w1), . . . , dG(v, wk)). If no two vertices of V (G) yield the same k-tuple, then W is a resolving set for G. The metric
dimension µ(G) is the minimum size of a resolving set for G. Our main result is that if G has n vertices, then the cop wins on
G1/m when m > min{n − 1,max{µ(G) + 2µ(G), ∆(G)}}.

Themetric dimension parameterwas introduced independently by Slater [14] and byHarary andMelter [4]. Computing it
is NP-complete [7]. The only graphs withmetric dimension 1 are paths, and the only n-vertex graphs withmetric dimension
n − 1 are complete graphs. The n-vertex graphs with metric dimension n − 2 have also been determined [2].

The relevance of metric dimension to this problem is natural. If the robber cannot move, then scanning a resolving set of
G finds the robber. Subdividing edges into sufficiently long paths ‘‘slows down’’ the robber enough that scanning a resolving
set of G still provides useful information about the robber’s location in G1/m.

We prove our main result in Section 2. Sections 3 and 4 reduce the threshold onm for the cop to win in G1/m when G is a
complete bipartite graph or a grid; for a gridm ≥ 2 suffices. Section 5 shows that the robber wins on graphs having a cycle
of length at most 5.

Several natural questions remain open. First, we conjecture that our main result is sharp in the following sense.

Conjecture 1.2. For n ≥ 4, the cop wins the game on K 1/m
n if and only if m ≥ n.

Our results depend heavily on subdividing edges into paths of equal length. Nevertheless, we conjecture that this
restriction is not necessary.
Conjecture 1.3. If the cop wins the game on a graph G, then subdividing one edge of G produces another graph on which the cop
wins.

Also, although the robberwins on the 6-cycle itself, it remains openwhether the robberwins on all graphswhose shortest
cycles have length 6.

2. Cop-win subdivisions of general graphs

Since the cop wins on a path by scanning one endpoint, we may assume that the given graph G is not a path. We may
also restrict our attention to connected graphs, since it is easy to determine which component contains the robber. When G
is not a path, µ(G) ≥ 2 (see [2]).

Definition 2.1. Given H = G1/m, let V̂ be the set of vertices in H that correspond to vertices of G. View V̂ as V (H) ∩ V (G),
so that these vertices of H can also be discussed as vertices of G. For v ∈ V̂ , let the span of v, denoted Span(v), be
{z ∈ V (H): dH(v, z) ≤ m − 1}, where dH(x, y) denotes the distance in H between vertices x and y. Let σ(q) denote the
result of scanning a vertex q ∈ V (H) (the distance from q to the robber at that time). Let W denote a fixed resolving set of
G, with vertices w1, . . . , wk, and let Ŵ = W ∩ V̂ . For v ∈ V (G) = V̂ , the W-vector of v is the k-tuple whose ith entry is
dG(v, wi).
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Lemma 2.2. With H = G1/m, any m consecutive positions of the robber in H lie in the span of some vertex v ∈ V̂ .

Proof. Let S be the set of positions occupied by the robber during somem consecutive rounds. If v ∈ S for some v ∈ V̂ , then
S ⊆ Span(v), since the robber cannot travel distance more thanm − 1 between the first and last of these rounds.

If S does not intersect V̂ , then S is contained among the internal vertices of some thread joining vertices vi, vj ∈ V̂ . In this
case, S lies in the spans of both vi and vj. �

We are given a resolving k-set W in G. When the vertices of Ŵ are scanned consecutively, we obtain a k-tuple D of
distances from vertices of Ŵ to the robber at successive times. Since W is a resolving set in G, the W -vectors of vertices in
G are distinct. If the robber remains at a vertex z ∈ V̂ during this time, then D = (mdG(z, w1), . . . ,mdG(z, wk)). Although
the robber can move, by Lemma 2.2 the robber remains within the span of some vertex v in V̂ .

Lemma 2.3. Let D be the k-tuple of distances to the robber returned by scanning the vertices of Ŵ in succession. If the robber
stays in Span(v) during this time, where v ∈ V̂ , then

D = (mdG(v, w1) + ρ1, . . . ,mdG(v, wk) + ρk)

for constants ρ1, . . . , ρk satisfying −(m − 1) ≤ ρi ≤ m − 1.

Proof. If z ∈ Span(v), then mdG(v, wi) − (m − 1) ≤ dH(z, wi) ≤ mdG(v, wi) + (m − 1), by the triangle inequality. �

A candidate is a vertex v ∈ V̂ satisfying the conclusion of Lemma 2.3; that is, the vector of distances generated during
the scan of Ŵ can be modified by at most m − 1 in each coordinate (and divided by m) to become the W -vector of v. By
Lemma 2.3, a vertex of V̂ whose span contains the robber during the scan of Ŵ belongs to the set of candidates. Lemmas 2.2
and 2.3 together imply that the set of candidates is nonempty. Our next lemma leads to an upper bound on the number of
candidates.

Lemma 2.4. If the distances in G from vertices v1 and v2 to some vertex of W differ by at least 2, then v1 and v2 are not both
candidates.

Proof. Name v1 and v2 so that dG(w, v1) < dG(w, v2). Since dG(w, v2) − dG(w, v1) ≥ 2 it follows that dH(w, v2) ≥ dH(w,
v1)+2m. Let x be the position of the robber whenw is scanned. If both v1 and v2 are candidates, then dH(w, v2)−(m−1) ≤

dH(w, x) ≤ dH(w, v1) + (m − 1), a contradiction. �

Corollary 2.5. There are at most 2k candidates.

Proof. When v is a candidate, the value in position i of D is mdG(wi, v) + ρi with −(m − 1) ≤ ρi ≤ m − 1. An integer is
within m − 1 of at most two multiples of m. Therefore, for each i there are only two possible values for dG(wi, v). Since W
is a resolving set in G, the 2k resulting possibleW -vectors for candidates determine at most one vertex each. �

We present an algorithm to locate the robber in G1/m when m is sufficiently large. As suggested in the introduction, the
algorithmhas several phases. The first phase, ScanW, finds a set of candidates. The second phase, PickOne, selects a candidate
z whose span contains the robber when selected. The third phase, GetCloser, scans the neighbors of z in G until it locates the
robber or finds another vertex z ′ in V̂ that is closer to the robber than z was when it was selected. This process is repeated
fewer than m times and can only end by locating the robber. Note that while we are scanning neighbors of z in GetCloser,
the robber may leave Span(z).

Theorem 2.6. Let m0 = min{n − 1,max{µ(G) + 2µ(G), ∆(G)}}, where n = |V (G)|. For H = G1/m with m > m0, the cop can
locate the robber in H within m(∆(G) + 1) rounds.

Proof. We provide a strategy for the cop to win. LetW be a resolving set in G of size µ(G).
The first phase, ScanW, scans all of Ŵ to produce a set C of candidates, at least one of which (by Lemma 2.2) contains the

robber in its span throughout this phase. Corollary 2.5 yields |C | ≤ 2µ(G). However, if µ(G) + 2µ(G) > n, then we skip this
phase and just let C = V̂ .

Next, PickOne scans vertices of C until a vertex z ∈ C is scanned such that σ(z) < m; we show that this must occur.
Sincem is at least the number of rounds in ScanW and PickOne together, Lemma 2.2 implies that the robber remains in the
span of one vertex of V̂ (call it z) from the beginning of the ScanW phase until all of C (if needed) is scanned. By Lemma 2.3,
this vertex z is in C . When z is scanned, by the definition of ‘‘span’’ we obtain σ(z) < m. Let ρ be the value of σ(z) at that
time; at this point we end PickOne.

We now enter GetCloser with parameters z and ρ. Let T = {v ∈ V̂ : dH(v, z) = m}. Note that |T | ≤ ∆(G). In
GetCloser(z, ρ), we scan vertices of T until we locate the robber or scan a vertex z ′

∈ T such that σ(z ′) < ρ. If σ(z ′) = 0,
then we have found the robber. Otherwise, we restart GetCloser with parameters z ′ and σ(z ′). Each trip through GetCloser
scans at most ∆(G) vertices; we must show that it locates the robber or ends with another vertex of V̂ closer to the robber.

Let M(z) = {x ∈ V (H): ⌊m/2⌋ ≤ dH(z, x) ≤ ⌈m/2⌉}; we call M(z) the midway set of z. Phase GetCloser(z, ρ) sets the
transition flag (immediately) if at some point the scan value is a multiple ofm. Phase GetCloser(z, ρ) sets the confusion flag if
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at some point the scan value is congruent tom/2modulom (whenm is even) or if two consecutive scan values are congruent
to (m±1)/2modulom (whenm is odd). This criterion is considered first when GetCloser(z, ρ) is entered, with scan value ρ
(thus in the odd case the last scan value in the previous phase may also be examined). We consider several cases depending
on these flags and the scan value for the current vertex v ∈ T .

Case 1: σ(v) < m and the transition flag is not set. Since σ(v) < m, the robber is in Span(v). (Note that σ(v) ≠ 0, since
otherwise the transition flag would be set.) Since the transition flag is not set, the robber has not visited V̂ in this phase, so
the robber is in the z, v-thread. Therefore, σ(v) determines the robber’s location.

Case 2: σ(v) < ρ and the transition flag is set. If σ(v) = 0, then the robber is at v. Otherwise, unset the flags and start
GetCloser(v, σ (v)).

Case 3: σ(v) = m > 2ρ and the confusion flag is not set. Since σ(v) = m, the robber is in T or at z. However, since
ρ < m/2 and the confusion flag is not set, the robber started between z and the midway set (inclusive) on its thread and
has not left that portion of the thread. Therefore, the robber cannot be in T and is at z.

Case 4: v is not the last vertex of T to be scanned, and no earlier case now applies. Set the transition or confusion flag if the
relevant condition holds, and continue.

Case 5: v is the last vertex of T to be scanned, and no earlier case now applies. If this case is reached, then σ(v) ≥ ρ and
the transition flag has been set by entering z (we explain this at further length below). If ρ ≤ σ(v) ≤ m, then the robber
is in the thread joining z and v and is located. If σ(v) > m, then the robber is at distance σ(v) − m from z. Furthermore,
σ(v) − m ≤ ρ − 1. Unset the flags and start GetCloser(z, σ (v) − m).

It remains to justify that GetCloser(z, ρ) operates as claimed. If the transition flag is never set, then the robber never
leaves the original thread, and Case 1 applies when the endpoint of that thread other than z is scanned.

If the transition flag is set by the robber entering T , then at least m − ρ rounds occur by the time the robber enters T ,
say at vertex u. If uwas scanned before the robber reached it, then Case 1 applied at that time, and the transition flag in fact
was not set. Hence u is scanned after the robber reaches it. Since |T | < m, fewer than ρ rounds occur in the phase after the
robber reaches u. Hence σ(u) < ρ when u is scanned, and Case 2 applies.

If the transition flag is set by the robber visiting z without first setting the confusion flag, then σ(v) = m when the
transition flag is set. Since also the midway set was not traversed (otherwise the confusion flag would have been set),
ρ < m/2, and hence Case 3 applies.

In the remaining case, the transition flag is set by the robber visiting z after setting the confusion flag. The robber has not
entered T during this phase, since it takes at least m rounds to move from T to z. Since the confusion flag has been set, the
robber has visitedM(z) (if m is even), or ended two consecutive rounds inM(z) (ifm is odd) (see Fig. 1).

Fig. 1. Scanning a vertex after the confusion flag is set.

Suppose that m is even. After visiting M(z), which took at least |ρ − m/2| rounds of this phase, at least m/2 rounds are
spent to reach z. Since |T | < m, not enough rounds remain in the phase for the robber to go farther than ρ − 1 steps away
from z.

When m is odd, reaching M(z) takes at least |ρ − m/2| − 1/2 rounds. If the scan distance is a multiple of m after the
fewest possible additional rounds, then the robber is at z if ρ < m/2 and in T if ρ > m/2. Creating ambiguity thus requires
two consecutive rounds in M(z) (one of which may be in the previous phase). Now, as in the even case, the robber cannot
go farther than ρ − 1 steps away from z before all of T has been scanned.

We have shown that in all cases the robber is located or a new GetCloser phase is initiated with a smaller value of ρ.
Since ρ is at most m − 1 at the start of the first GetCloser phase, this phase occurs at most m − 1 times. Each such phase
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takes at most ∆(G) rounds. The ScanW and PickOne phases together take at mostm rounds. Therefore, the entire algorithm
takes at mostm(∆(G) + 1) rounds to find the robber. �

Some graphs have metric dimension nearly as large as the vertex set. For example, the complete graph Kn has metric
dimension n − 1, and there are three families of n-vertex graphs with metric dimension n − 2 [2]. The upper bound n in
Theorem 2.6 is better than the upper bound 1 + max{µ(G) + 2µ(G), ∆(G)} when µ(G) > log2 n.

A bound in terms ofµ(G) alone, weaker than Theorem 2.6, is obtained by replacing∆(G)with 3µ(G). When u is a neighbor
of v, and w belongs to a smallest resolving setW , the distances of u and v from w differ by at most 1. SinceW is a resolving
set, there are fewer than 3µ(G) distance vectors of neighbors of v, with no duplication, so d(v) < 3µ(G). Hernando et al. [5]
noted more generally that within distance k of a vertex in G there are at most k(2k + 1)µ(G) vertices.

3. Subdivisions of complete bipartite graphs

When G is a complete bipartite graph, we can further reduce the threshold onm for the cop to win in G1/m. By examining
the two partite sets in separate phases, we reduce the threshold onm for Ka,b to max{a, b} (or to a + 1 if a = b).

The overall strategy is like that of Theorem 2.6. An initial phase finds a vertex of the small part within distance m of
the robber. Phases that scan the two parts then alternate. Like GetCloser(z, ρ), these phases have two arguments, the last
scanned vertex in the previous phase (in the other partite set) and the scan distance at that time. Again a phase seeks to locate
the robber or reduce the scan distance that starts the next phase. However, whenm = max{a, b} we are only guaranteed to
reduce the scan distance after two phases.

Theorem 3.1. For H = K 1/m
a,b with m ≥ a ≥ b and m > b, the cop can locate the robber on H within b + m(b + a) rounds.

Proof. Let G = Ka,b, having partite sets X0 and X1 with |X0| = a and |X1| = b. We present a cop strategy. In the first phase,
called BiPickOne, we scan vertices of X1 until we scan some vertex z ∈ X1 such that σ(z) ≤ m. If the robber visits X0, then
BiPickOne ends on that round,which returns scan valuem. If the robber does not visit X0, then the robber remains in the span
of one vertex z ∈ X1 throughout the phase, and σ(z) < m when z is scanned. Let ρ be the scan distance when BiPickOne
ends.

We next enter Scan0(z, ρ). We alternate two types of phases, Scan0 and Scan1, where Scani scans vertices of Xi until the
robber is located or we are able to start Scan1−i with a smaller scan value. The two types are almost the same, so we describe
them together.

Since |Xi| ≤ m, Scani takes at most m rounds (with strict inequality if i = 1). Note that the distance in H between two
vertices of the same partite set of G is 2m, while the distance between vertices of distinct partite sets is m. No distance
exceeds 2m. Say that the transition flag is set if the scan distance was 2m at some previous round in this phase. Let v denote
the currently scanned vertex (in Xi) during Scani(z, ρ). We consider several cases, depending on σ(v) and the transition
flag.

Case 1: σ(v) < m and the transition flag is not set. Since σ(v) < m, the robber is in Span(v). Since the transition flag is not
set, the robber has not visited Xi in this phase, so the robber remains in Span(z). Therefore, the robber is in the z, v-thread,
and σ(v) determines the robber’s location.

Case 2: σ(v) ≤ ρ − i. If σ(v) = 0, then the robber is at v. Otherwise, unset the flag and start Scan1−i(v, σ (v)). Note that
σ(v) ≤ ρ if i = 0, while σ(v) < ρ if i = 1.

Case 3: σ(v) = m. The robber is now in X1−i. If ρ < m or i = 1, then since there are not enough rounds in Scani(z, ρ) for
the robber to reach any vertex of X1−i other than z, the robber is located. If ρ = m = a and i = 0, then unset the flag and
start Scan1(v,m).

Case 4: No case above applies. Continue, setting the transition flag if σ(v) = 2m.
If Case 3 does not occur, then the robber does not visit z during the phase. The robber then remains in the original thread

and produces Case 1 unless the transition flag is set by entering Xi at some vertex z ′. Since the robber begins the phase ρ
steps from z, it takesm−ρ steps to reach z ′. If z ′ is scanned before the robber reaches it, then Case 1 occurs. After the robber
reaches z ′, at most ρ steps remain in Scani(z, ρ), with strict inequality when i = 1. Hence when z ′ is scanned, Case 2 occurs.

The exception in Case 3 can only occur during the first instance of Scan0. The subsequent first instance of Scan1 locates
the robber or ends with a scan value less thanm, since b < m.

The BiPickOne phase takes at most b rounds and results in ρ ≤ m. Each pair of calls to Scan0 and Scan1 that does not
locate the robber decreases ρ by at least 1 and scans each vertex at most once. Hence the cop locates the robber in at most
b + m(a + b) rounds. �

If actuallym > a in Theorem 3.1, then the proof is slightly simpler, with the condition σ(v) < ρ in both Scan0 and Scan1
in Case 2. Now the scan value strictly decreases with each phase, and the robber is located within b + m(a + b)/2 rounds.
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4. Subdivisions of grids

The grid Gk,l is the graph with vertex set {vi,j: 1 ≤ i ≤ k, 1 ≤ j ≤ l} defined by making vi,j and vi′,j′ adjacent if and only
if |i − i′| + |j − j′| = 1 (see Fig. 2). When k, l ≥ 2, the graph Gk,l contains 4-cycles. We will show (in Section 5) that the
robber wins on such graphs. A very special case of various results in [7,9] is that grids have metric dimension 2 ({v1,1, vk,1}

is a resolving set); Theorem 2.6 thus implies that the cop wins on G1/m
k,l whenm ≥ 6. Here we lower the threshold to 2.

Fig. 2. The graph G4,6 and the graph G1/2
4,6 .

Theorem 4.1. If H = G1/m
k,l with m ≥ 2, then the cop can locate the robber on H within three rounds.

Proof. First scan v1,1. If σ(v1,1) is a multiple ofm, then the robber is in V̂ , at a vertex in {vi,j: i+ j−2 = σ(v1,1)/m}. Call this
set S (Fig. 3 top left). After moving in round 2, the robber is in the set S ′ consisting of all vertices within distance 1 of S. The
possible locations group into disjoint sets of five vertices around vertices of S, except for smaller sets around the elements
of S with degree less than 4 (Fig. 3 top right).

Fig. 3. The game on the grid when σ(v1,1) is a multiple ofm.

The cop now scans the (unique) vertex of S ′ closest to vk,1. The subsets of S ′ with a fixed distance from vk,1 consist of one
vertex of V̂ or two neighbors of such a vertex. The robber sits in one such set, already located unless the set has size 2 (Fig. 3
bottom left).

If the set has size 2, then the robber moves in round 3. The robber can remain still, move back to its original location in
V̂ , or move one step farther away. The resulting five possible locations form a path in H , and distances along the path are
true distances in H . Now the cop scans an endpoint of this path to locate the robber (Fig. 3 bottom right).

When σ(v1,1) is not a multiple of m, let a =

σ(v1,1)/m


and b = σ(v1,1) − ma. The robber is initially at a vertex of

degree 2. The possible vertices again form a ‘‘diagonal’’ in the drawing of H , with fixed distance b from the vertices that
would be the candidates if σ(v1,1) had been equal toma (Fig. 4 left).
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Fig. 4. The game on the grid when σ(v1,1) is not a multiple ofm.

In round 2, the robber moves at most one step along the thread containing the original location. The key observation is
that all possible locations of the robber now lie along a path; whenm = 2, they induce a path (Fig. 4 right). Again distances
along the path are distances in H , so the cop locates the robber by scanning an endpoint of this path. �

5. Graphs with short cycles

The cop wins on the n-vertex cycle Cn if n ≥ 7, even without the no-backtrack condition [12]. However, the robber wins
on graphs having small cycles. Herewemust clarify themeaning of ‘‘robberwins’’. The robber can never guarantee not being
located, since the cop may get lucky and scan the vertex where the robber is. Hence the meaning of ‘‘robber wins’’ is that
the cop cannot guarantee winning.

Whenπ and τ are partitions of a set S, we say thatπ is a refinement of τ if everymember ofπ is contained in onemember
of τ .

Theorem 5.1. The robber wins on any graph G having a cycle of length at most 5.

Proof. Let C be a shortest cycle in G. The robber generously agrees to stay within V (C). Even with this restriction on the
robber, the cop will not be able to locate the robber.

A scan of any vertex v partitions V (C) into sets by their distance from v in G; the robber is confined to one such set. If the
partition from scanning a vertex v′ is a refinement of the partition given by scanning v, then the cop gains more information
by scanning v′. Since C is an induced subgraph, when C has odd length the most refined such partitions put one vertex u by
itself and pair the vertices of C having equal distance along C from u (see Fig. 5). Such a partition can arise by scanning u,
for example. When C has length 4, it may be possible to have two singleton classes and one of size 2, or to have two classes
of size 2 consisting of consecutive pairs (see Fig. 5). We make the cop strongest by allowing all these partitions of C to be
available by scanning appropriate vertices.

Fig. 5. The non-refinable partitions of small cycles, up to automorphism.

At the initial scan, the robber may be anywhere on C , so we may assume that the robber is in a class of size 2 in the
partition chosen by the cop. We show that the robber can maintain the property of possibly being at either vertex of some
class of size 2 in the partition chosen by the cop. Since the cop does not know which vertex of the current pair contains
the robber, to maintain this property after the next round it suffices that both vertices of some class of size 2 in the next
partition are reachable from the current class.

When C is a 3-cycle, each partition has only one class of size 2 (call it the ‘‘pair’’), and each vertex of the pair in the next
partition is equal to or adjacent to a vertex of the pair in the current partition.

When C is a 4-cycle, the cop can choose whether the next class of size 2 consists of adjacent or nonadjacent vertices.
Nevertheless, each vertex in any pair in V (C) is adjacent to or belongs to each other pair in V (C), so again the robber can
maintain the desired property.

When C is a 5-cycle, the initial scan may have the robber in the class with nonadjacent vertices. The robber may always
be at either vertex of the nonadjacent class in the next partition, since each vertex in that pair has a neighbor in (or belongs
to) each pair of nonadjacent vertices. �
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Seager [12] showed that the cop wins on a 6-cycle under the no-backtrack condition, but the cop does not win on a
6-cycle when that condition is dropped. In particular, when G is a 6-cycle in our model, the robber can always choose a class
of size 2 whose vertices are both reachable from the current class of size 2. However, we have not been able to determine
who wins in our model on every graph whose shortest cycles have length 6, since vertices outside the 6-cycle can produce
other partitions. The cop can then prevent the robber frommaintaining the property in Theorem 5.1. The robber would need
a more complex strategy that involves leaving the 6-cycle.
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