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a b s t r a c t

Well-known results on the avoidance of large squares in (full) words include the following:
(1) Fraenkel and Simpson showed that we can construct an infinite binary word containing
at most three distinct squares; (2) Entringer, Jackson and Schatz showed that there exists
an infinite binary word avoiding all squares of the form xx such that |x| ≥ 3, and that the
bound 3 is optimal; (3) Dekking showed that there exists an infinite cube-free binary word
that avoids all squares xx with |x| ≥ 4, and that the bound of 4 is best possible. In this
paper, we investigate these avoidance results in the context of partial words, or sequences
that may have some undefined symbols called holes. Here, a square has the form uv with
u and v compatible, and consequently, such a square is compatible with a number of full
words that are squares over the given alphabet. We show that (1) holds for partial words
with at most two holes. We prove that (2) extends to partial words having infinitely many
holes. Regarding (3), we show that there exist binary partial words with infinitely many
holes that avoid cubes and have only eleven full word squares compatible with factors of
it. Moreover, this number is optimal, and all such squares xx satisfy |x| ≤ 4.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The existence of square-free words over a three-letter alphabet has been proven several times in various ways—first by
Thue in [14], in which he also showed the avoidance of the triples aca and bcb. According to Currie [3], ‘‘One reason for this
sequence of rediscoveries is that non-repetitive sequences have been used to construct counterexamples in many areas of
mathematics: ergodic theory, formal language theory, universal algebra and group theory, for example . . ..’’

For full words, the question of howmany distinct squares a binary word contains was first raised in [6]. There, Entringer,
Jackson and Schatz give a construction for an infinite binary word that avoids all squares xxwith |x| ≥ 3, and show that the
bound 3 is the best possible. More precisely, using the notation from [7], they obtain g(5) = ∞, where g(n) denotes the
maximum length of a binary word containing no more than n squares. In [7], Fraenkel and Simpson improve the result by
showing that there actually exists an infinite binary word containing only the squares a2, b2 and (ab)2. Their construction,
involving several steps and non-uniform morphisms, was simplified by Rampersad, Shallit and Wang in [13], where two
uniform morphisms are used. We also mention the nice short proof given in [9]. Moreover in [5], Dekking shows that there
exists an infinite cube-free binary word that avoids all squares xx such that |x| ≥ 4. He also proves that the bound 4 is best
possible.
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In this paper, we investigate the avoidance of large squares in partial words, sequences over a finite alphabet that may
contain some ‘‘holes’’ denoted by �’s (here � is compatible with, or matches, any symbol of the alphabet). In this context,
a square has the form uv where u is compatible with v, and consequently, such a square is compatible with a number of
full words that are squares over the alphabet. Square-freeness and cube-freeness of partial words were studied for the first
time by Manea and Mercaş [11]. See also the more recent results in [2] and in [8]. One of our goals is to compute, whenever
it exists, gh(n), the maximum length of a binary partial word with h holes and having no more than n distinct full squares
compatible with factors of it. We also investigate the avoidance of large squares in cube-free binary partial words.

The contents of our paper are as follows. In Section 2, we compute all the gh(n)’s, extending the results from [7]. In
particular, we show that all infinite binary partial words whose factors are compatible with no more than three distinct full
squares have atmost two holes.Moreover, we show that there exist arbitrarily long binary partial words having three or four
holes and atmost three distinct full squares compatiblewith factors of them.We also construct a binarywordwith infinitely
many holes such that the only full squares compatiblewith factors of it are aa, bb, abab and bbbb. Hence, we extend the result
of Entringer, Jackson and Schatz to partial words with infinitely many holes. In Section 3, we extend to partial words the
result of Dekking.We show that for at most two holes there exist infinite cube-free binary partial words avoiding all squares
xx such that |x| ≥ 4, and that the bound 4 given by Dekking, regarding the length of the squares allowed, is exceeded for
more than two holes. In Section 4, we investigate the possibility of obtaining fewer squares by increasing the alphabet size.
We build an infinite partial word with one hole over the ternary alphabet {a, b, c} such that the only full square compatible
with factors of it is aa. It turns out that the position of the hole must be the first.

We end this section with an overview of basic concepts of combinatorics on partial words. The reader is referred to [1]
for more background material.

Let A be a non-empty finite set of symbols called an alphabet. Each element a ∈ A is called a letter. A full word over A is a
sequence of letters from A. A partial word over A is a sequence of symbols from A� = A∪{�}, the alphabet A being augmented
with the ‘‘hole’’ symbol � (a full word is a partial word without holes). We will denote by u(i) the symbol at position i of the
partial word u, i ≥ 0. The set containing all full words over A is denoted by A∗, while the set of all partial words over A is
denoted by A∗

�
.

The length of a partial word u is denoted by |u| and represents the number of symbols in u. The emptyword is the sequence
of length 0 and is denoted by ε. For a partial word u, the powers of u are defined recursively by u0

= ε and for n ≥ 1,
un

= uun−1. Furthermore, limn→∞ un is denoted by uω .
If u and v are two partial words of equal length, then u is said to be contained in v, denoted as u ⊂ v, if u(i) = v(i) for all

i such that u(i) ∈ A. Partial words u and v are compatible, denoted as u ↑ v, if there exists a partial word w such that u ⊂ w
and v ⊂ w. If u, v are non-empty compatible partial words, then uv is called a square. If u, v, w are non-empty partial words,
then uvw is called a cube if there exists a partial word x such that u ⊂ x, v ⊂ x andw ⊂ x. Whenever we refer to a square uv,
it will imply that u ↑ v. A partial word is square-free (respectively, cube-free) if it contains no squares (respectively, cubes).

A partial word u is a factor of a partial word v if there exist x, y such that v = xuy (the factor u is proper if u ≠ ε and
u ≠ v), and u is an internal factor of v if x, y are non-empty. We say that u is a prefix of v if x = ε and a suffix of v if y = ε.
For partial words u, v, w with w = uv, we will also denote v by u−1w, and u by wv−1.

2. Avoiding large squares in binary partial words

Let gh(n) be the length of a longest binary partial word with h holes and having at most n distinct full squares compatible
with factors of it if such words exist, and gh(n) is undefined in the case where there exist arbitrarily long binary partial
words but there does not exist any infinite partial word satisfying the above conditions. In this section, we show how the
sequence {gh(n)} behaves. The case of h = 0 appears in [7]. There, it is shown that g0(1) = 7 (aaabaaa, abaaaba and their
complements, abbbabb and its reverse and their complements), while g0(2) = 18 (the only word having this property is
abaabbaaabbbaabbab and its complement which is also its reverse). It is also shown that there exists an infinite binary word
which has only three different squares, that is, g0(n) = ∞ for all integers n ≥ 3. Simpler proofs of this latter result appear
in [13,9].

Using a computer programwe found that for one hole, g1(0) = 1 (�), g1(1) = 5 (�aaba), g1(2) = 16 (�abbaaabbbaabbab);
for two holes, g2(0) = 0, g2(1) = 3 (�a�), g2(2) = 14 (�abbaaabbbaab�); for three holes, g3(0) = 0, g3(1) = 0, g3(2) = 9,
and the only words containing two distinct squares are ���, �a�b�, �a�bba�, �abb�aab�, their reverses and complements.
Moreover, for more than three holes no word exists containing less than three squares. So for h > 3, gh(n) = 0 for all
non-negative integers n ≤ 2. We refer the reader to Table 1 which lists the gh(n)’s that will be derived in this paper.

In order to prove our results we make use of some morphisms given by Rampersad, Shallit and Wang in [13]. Let
us first recall these, together with some results obtained there. Let α : {a, b, c, d, e}∗ → {a, b, c, d, e}∗ (respectively,
β : {a, b, c, d, e}∗ → {a, b}∗) be the five-letter 24-uniform morphism (respectively, the 6-uniform morphism) defined
as follows:

a → abcdcbabcdeabcbabcdcbcde
b → abcbabcdedcdeabcdedcbcde
c → abcbabcdcbcdeabcdcbabcde
d → abcdcbcdedcdeabcdcbabcde
e → abcdcbcdeabcbabcdedcbcde
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Table 1
The gh(n)’s.
n \ h 0 1 2 3 4 5 6 · · ·

0 3 1 0 0 0 0 0 · · ·

1 7 5 3 0 0 0 0 · · ·

2 18 16 14 9 0 0 0 · · ·

3 ∞ ∞ ∞ – – 0 0 · · ·

4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ · · ·

5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ · · ·
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and
a → abbbaa
b → babbaa
c → bbbaaa
d → bbaaba
e → bbaaab.

Rampersad, Shallit and Wang’s construction shows that the infinite binary full word w0 = β(αω(a)) contains only the
three squares aa, bb and abab, showing as mentioned before that g0(n) = ∞ for all integers n ≥ 3. We now construct
infinite binary partial words with one or two holes such that aa, bb and abab are the only full squares compatible with their
factors, showing that g1(n) = g2(n) = ∞ for all integers n ≥ 3.

Theorem 1. The only full squares compatible with factors of w1 = �β(αω(a)), an infinite binary partial word with one hole, are
aa, bb and abab.

Proof. Let us assume that there are more than three full distinct squares compatible with factors of w1. Since w0 contains
only aa, bb and abab as squares, there exists inw1 a square of the form�ua0u′, with�u ↑ a0u′ and ua0u′a1 prefix ofw0, where
u = u′ are non-empty words, and a0, a1 are letters from {a, b}. Moreover, we can write |u| = 6q + r , for some integers q, r
with 0 ≤ r < 6, where q represents the number of blocks of length 6 created by the images of the morphism β . Computer
programs showed that actually q ≥ 2. If r = 0, that is u = β(x), for some word x ∈ {a, b, c, d, e}+, since u = u′ is a prefix of
w0 and |u| = 6q, it follows that for some letter f ∈ {a, b, c, d, e}, β(f ) is a prefix of a0β(a). This is impossible since we do not
have a letter whose morphism through β is aabbba or babbba. If r = 5, then for some word x ∈ {a, b, c, d, e}+, ua0 = β(x).
But since the images of all letters after applying the morphism β have the first five characters different and u = u′, it must
be the case that a1 = a0. This implies that w0 contains the square ua0u′a1, which is a contradiction to the fact that w0 has
factors compatible with only the full squares aa, bb and abab.

Hence, 0 < r < 5. Since β(ab) is a prefix of u, it follows that there exist letters b0, b1, b2 such that β(ab) is an internal
factor of β(b0b1b2) (where β(b0) is the block starting at position |u| − r in u and β(b1b2) are the first two blocks starting at
position 5 − r in u′). Note that b0 ≠ b1 and b1 ≠ b2, since two consecutive letters in αω(a) are always different. Checking
all options, the only possibility for this to happen is when b0 = e, b1 = d and b2 = e. Yet, according to the definition of α,
αω(a) does not contain ede as a factor, so we get a contradiction.

Since all cases lead to contradiction, we conclude that the only full squares compatible with factors of w1 are aa, bb,
abab. �

Theorem 2. The only full squares compatible with factors of the word w2 = ��β(αω(a)), an infinite binary partial word with
two holes, are aa, bb and abab.

Proof. Let us assume that there are more than three full distinct squares compatible with factors of w2. According to
Theorem1, it follows that there exists inw2 a square of the form��ua0a1u′, with ua0a1u′a2a3 a prefix ofw0, where u = u′ are
non-emptywords, and a0, a1, a2 and a3 are letters from {a, b}. Let us refer to thenotationused in theproof of Theorem1.Using
a computer we found that q > 5. If r = 0, we have that for some letter f ∈ {a, b, c, d, e}, β(f ) is a prefix of a0a1β(a). Again
we reach a contradiction since abbb is not a suffix of any of the images of β . If r = 5, then for some letter f ∈ {a, b, c, d, e},
β(f ) is a prefix of a1β(a), which is a contradiction.

If r = 4, then either a0a1 = ab or a0a1 = ba. In order to avoid getting a square inw0, it must be the case that a2a3 = ba, or
a2a3 = ab respectively. Hence, if the block starting in u at position |u|− r is β(d) (respectively β(e)), then the block starting
in u′ at position |u′

| − r is β(e) (respectively β(d)). By the definition of α, we know that β(e) is always preceded by β(d).
This implies that either u or u′ will end in β(dd), which is a contradiction since w0 only contains the squares aa, bb, abab.

Since the last case of 0 < r < 4 is similar to the one in the proof of Theorem 1, we conclude that the only squares
compatible with factors of w2 are aa, bb and abab. �

We next construct arbitrarily long binary partial words with three or four holes such that aa, bb and abab are the only full
squares compatible with factors of them. We also show that no infinite binary partial word exists with three or four holes
and with at most three distinct full squares compatible with factors of it, showing that g3(3), g4(3) are undefined. We first
prove two lemmas.
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Lemma 1. Let m be an arbitrarily large positive integer. The only full squares compatible with factors of w3 = β(αm(a))�, a
binary partial word with one hole, are aa, bb and abab.
Proof. Considering that β(a) = rev(s(e)) and β(b) = rev(s(d)), where rev denotes the reversal of words and s(a) = b and
s(b) = a, and the fact that only the first two letters of an α image are used, gives quite straightforwardly that Lemma 1 is
just symmetric with Theorem 1. �

Lemma 2. Let m be an arbitrarily large positive integer. The only full squares compatible with factors of w4 = β(αm(a))��, a
binary partial word with two holes, are aa, bb and abab.
Proof. The proof is similar to that of Lemma 1, the result here being symmetric with Theorem 2. �

Theorem 3. There exist arbitrarily long binary partial words with three or four holes, where aa, bb and abab are the only full
squares compatible with factors of them.
Proof. Letm be an arbitrarily large positive integer. We will show that aa, bb and abab are the only full squares compatible
with factors of ��w4 = ��β(αm(a))�� (for three holes, take �w4). For the sake of a contradiction, let us assume that
��β(αm(a))�� has a factor v0v1 that is compatible with a full square other than aa, bb and abab. By Theorems 1 and 2 and
Lemmas 1 and 2, v0v1 has at least one hole at both ends. Since α is a 24-uniformmorphism and β is a 6-uniformmorphism,
β(αm(a)) is of length 6 × 24m. Therefore, v0v1 must have the same number of holes at both ends since squares are of even
length. Let u and u′ denote words of equal length in the following two cases (note that the length of u is divisible by 6, that
is, u and u′ consist of full blocks only):

If v0v1 = ��uu′
��, then ��u ↑ u′

��. Since β(a) is a prefix of u but none of the images of β have abbb as a suffix, this is
a contradiction.

If v0v1 = �uu′
�, then �u ↑ u′

�. Since β(a) is a prefix of u but none of the images of β have abbba as a suffix, this is a
contradiction. We conclude that aa, bb, abab are the only full squares compatible with factors of ��w4. �

Using a computer program,we found that all binary partial words of the form u0�u1 with |u0| = |u1| = 8 havemore than
three distinct squares compatible with factors of them. This implies that all arbitrarily long partial words with at most three
distinct full squares compatible with factors of them and at least three holes should have the holes placed within the first
or the last eight positions. Again, using a computer program, we found that all binary partial words with at least three holes
within the first eight symbols and no more than three distinct full squares compatible with factors of them have maximum
length 13. This gives us the next two straightforward results.
Proposition 1. All infinite binary partial words with more than two holes have more than three distinct full squares compatible
with factors of them.
Proposition 2. All binary partial words with more than four holes have more than three distinct full squares compatible with
factors of them.

Thus for h > 4, gh(n) = 0 for all non-negative integers n ≤ 3.
We actually found a construction for a binary word with infinitely many holes such that the only full squares compatible

with factors of it are aa, bb, abab and bbbb. This shows that when n ≥ 4, gh(n) = ∞ for all integers h ≥ 3. We use the
morphism α and a slightly modified version of the morphism β , β̂ : {a, b, c, d, e}∗ → {a, b, �}

∗, defined as follows:
a → �bbbaa
b → babbaa
c → bbbaaa
d → bbaaba
e → bbaaab.

Theorem 4. The only full squares compatible with factors of w5 = β̂(αω(a)), a binary partial word with infinitely many holes,
are aa, bb, abab and bbbb.
Proof. Let uu′ be a factor of w5 such that u ↑ u′. Using a computer program, we checked that no other full squares of
length less than 30 are compatible with factors of w5. In order to prove that no full squares besides aa, bb, abab and bbbb are
compatible with factors ofw5, it suffices to show that for each hole in u, the corresponding character in u′ is a, and vice versa.
In other words, replacing the holes with a’s would transform w5 into w0, which we know has only the three full squares aa,
bb, abab. Assume that a hole in u is replaced by b in u′ (the case of a hole in u′ being identical).

If there exists a hole at position i in uu′, for some integer i < |u| − 6, then u has a factor �bbbaab, since β̂(a) cannot
be followed by another β̂(a). Hence, there is a corresponding factor bbbbaab in u′. Since this can be obtained only through
β̂(ec), a contradiction follows by the definition of α.

If there exists a hole at position i in uu′, for some integer i ≥ |u| − 6 ≥ 9, then the hole is preceded by v = aaababbaa or
v′

= ababbaaab, which are suffixes of β̂(cb) or β̂(de) respectively, the latter images always preceding β̂(a). Since a factor
compatible with v or v′ is followed by a � or an a, we get the desired result. �

Note that Theorem 4 extends to partial words with infinitely many holes the surprising result of Entringer, Jackson and
Schatz stating that there exists an infinite binary word that avoids all squares xx such that |x| ≥ 3, and that the bound 3 is
best possible [6].
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3. Avoiding large squares in cube-free binary partial words

In [5], Dekking shows that there exists an infinite cube-free binary word that avoids all squares xx such that |x| ≥ 4.
Dekking also proves that the bound 4 is best possible. Using a computer program, we found that all words w with the
property above and with length |w| ≥ 114 must indeed contain all squares |x| ≤ 3 except (aa)2, (bb)2, (aaa)2 and (bbb)2.
Note that a word containing (aa)2, (bb)2, (aaa)2 or (bbb)2 is not cube-free.

Remark 1. All cube-free binary words of length greater than 113 avoiding all squares xx such that |x| ≥ 4 must contain all
of the following ten squares: a2, b2, (ab)2, (ba)2, (aab)2, (aba)2, (abb)2, (baa)2, (bab)2 and (bba)2.

In [13], it is shown that the infinite full binaryword v0 = δ(γ ω(a)) is cube-free and avoids all squares xx such that |x| ≥ 4,
where the 10-uniform morphism γ : {a, b, c, d}∗ → {a, b, c, d}∗ is defined by

a → adbacabacd
b → adbacdabac
c → acabadbacd
d → acadabacab

and the 6-uniform morphism δ : {a, b, c, d}∗ → {a, b}∗ by

a → abaabb
b → ababba
c → abbaab
d → abbaba.

Note that v0 is prolongable on a (therefore δ(a) = abaabb is a prefix of v0). Using the morphisms γ and δ, we will prove
that there exist cube-free binary partial words that avoid all squares xx such that |x| ≥ 4.

Theorem 5. The only full squares compatible with factors of the word v1 = �(δ(a))−1v0, an infinite cube-free binary partial
word with one hole, are the ten squares in Remark 1.

Proof. Let us assume there are more than ten full distinct squares compatible with factors of v1. Since v0 only contains the
ten squares in Remark 1, theremust be a square of the form �ua0u′ with �u ↑ a0u′, and �ua0u′a1 a prefix of v1, where u = u′

are non-empty words and a0, a1 are letters from {a, b}. Moreover, by the construction of v1, we can write |u| = 6q + r ,
for some non-negative integers q, r with 0 ≤ r < 6. Here, q represents the number of blocks of length 6 created by the
images of the morphism δ. Using a computer program, we found q > 2. Since the prefix of γ (a) is adb, by looking at the
construction of v1, δ(db) = abbabaababba must be a prefix of u. If r ≠ 5, this implies there exist letters b0, b1, b2 such that
δ(b0b1b2) = y0δ(db)y1 where y0, y1 are words with |y0| ≢ 0 (mod 6). This is impossible since none of the images of δ have
b or aa as a prefix, nor is it abaaba. Therefore, r = 5. But, since all of the images of δ have unique five-letter prefixes, this
implies a0 = a1. This is a contradiction since now v0 has the square ua0u′a1.

Since v0 is cube-free and avoids all squares xx such that |x| ≥ 4, to show that v1 is cube-free it suffices to search for small
cubes of length at most 18, which are prefixes of v1. �

Theorem 6. The only full squares compatible with factors of v2 = �baabv1, an infinite cube-free binary partial word with two
holes, are the ten squares in Remark 1.

Proof. Let us assume there are more than ten full distinct squares compatible with factors of v2. Since, by Theorem 5, the
only full squares compatible with factors of v1 are the ten squares in Remark 1, theremust be a square of the form z�uz0a0u′

with z�u ↑ z0a0u′ where a0 is a letter and u, u′, z, z0 are words such that u = u′, z ↑ z0, and z is a suffix of �baab. Let
�baab�uz0a0u′z1a1 be the prefix of v2, where |z| = |z1| and a1 is a letter. Note that 0 < |z| ≤ 5, since |z| = 0 falls into
the case of Theorem 5. Using exactly the same notation and reasoning from the proof of Theorem 5, it must be the case that
r = 5 − |z|. This implies that z0a0 is a suffix of an image of δ. If |z| = 1, then r = 4, meaning that the last image of δ that
starts in u has four symbols in u. Since all of the images of δ have unique four-letter suffixes, this implies z0a0 = z1a1. So we
have the square uz0a0u′z1a1 in v1. If |z| = 2, then r = 3, which implies that aba0 must be a suffix of an image of δ (recall
that z0 ↑ z). Since v2 ↑ v0, we cannot have that a0 = b, since this implies that there exists a square zbuz0bu′ in v0. Thus,
a0 = a, and therefore the last image of δ starting in umust be abbaba. But, this is also a prefix of u′, so we obtain the square
δ(dd) in v1. If 3 ≤ |z| ≤ 5, then according to the previous reasoning, a0 ≠ b, indicating that one of the blocks ends in aaba.
There exists no image of δ having aaba as a suffix.

Since v1 is cube-free and avoids all squares xx such that |x| ≥ 4, to show that v2 is cube-free it is enough to check the
small cubes of length at most 12, which are prefixes of v2. �

Theorem 7. Let m be an arbitrarily large positive integer. The only full squares compatible with factors of v3 = δ(γ 3m+1

(a)(acd)−1)�baab�, a cube-free binary partial word with two holes, are the ten squares in Remark 1.
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Proof. Let us assume there are more than ten full distinct squares compatible with factors of v3. Since v0 only contains the
ten squares in Remark 1 and since v3 is compatible with a prefix of v0, there must be a square of the form ua1z1u′

�z with
ua1z1 ↑ u′

�z and a0z0ua1z1u′
�z compatible with a factor of v0, where a0, a1 are letters, and u, u′, z, z0, z1 are words such

that u = u′, z ↑ z1, |z| = |z0| = |z1|, and z is a prefix of baab�. Note that 0 ≤ |z| ≤ 5. Using a notation and reasoning similar
to those in the proof of Theorem 5, it must be that r = 5 − |z|. In this case we have that a1z1 is a prefix of an image of δ.
If 0 ≤ |z| ≤ 4, since a1 is the first letter of an image of δ, we must have that a1 = a. But a1 ≠ a, since this implies that v0
has the square uaz1u′az. If |z| = 5, this implies that a1z1 ↑ �baab�. The only image of δ that has baab as an internal factor
is δ(a) = abaabb. Hence, a1z1 = δ(a). This is impossible since v0 now has the square uδ(a)u′δ(a).

Since v3 avoids large squares, it must avoid large cubes. One can easily check that v3 avoids small cubes by looking at the
morphisms that constructed v3. �

Let us now look at the case of more than two holes. First, note that in a cube-free binary partial word, any letters adjacent
to a hole must be different, and between any two holes there must be at least two different letters. Now, using a computer
program, we found that there are at least eleven distinct full squares compatible with factors of any cube-free binary partial
word of the form u0�u1 with |u0| = |u1| = 9. This implies that any cube-free binary partial word that has at most ten
distinct full squares compatible with factors of it must have all the holes in the first or last nine positions. It is then easy to
check that it is impossible to avoid a cube in a word of length eleven with three holes in the first nine positions.

Proposition 3. • At least eleven distinct full squares are compatible with factors of any infinite cube-free binary partial word
containing more than two holes.

• At least eleven distinct full squares are compatible with factors of any cube-free binary partial word with more than four holes.

Theorem 8. Let m be an arbitrarily large positive integer. The only full squares compatible with factors of v4 = �baab�δ
(a−1γ 3m+1(a)(acd)−1)�baab�, a cube-free binary partial word with four holes, are the ten squares in Remark 1.

Proof. Let us assume there are more than ten full distinct squares compatible with factors of v4. By Theorems 6 and 7, there
must exist a square of the form zuu′z ′ with zu ↑ u′z ′, for z a non-empty suffix of �baab�, z ′ a non-empty prefix of �baab�,
and uu′

= δ(a−1γ 3m+1(a)(acd)−1). If it is not the case that z = z ′
= �baab�, since δ(db) is a prefix of u and a suffix of u′,

this implies that there exist letters b0, b1, b2 such that δ(b0b1b2) = y0δ(db)y1 for |y0| ≢ 0 (mod 6). This is impossible since
no image of δ has b or aa as a prefix, nor is it abaaba. If z = z ′

= �baab�, since δ(a) is the only image of δ that has baab as
an internal factor, δ(a) is a prefix of u′ and a suffix of u. We get a contradiction since the square δ(aa) is now a factor of uu′,
which is a factor of v0. �

Next, we extend the result of Dekking by presenting a construction for a cube-free binary partial word with infinitely
many holes that only has eleven distinct full squares compatible with factors of it. The squares are of the form xx, where
|x| ≤ 4 (the ten squares stated in Remark 1 plus (abba)2). Recall that a word is (r+, n)-free if it contains no repetition us with
|u| ≥ n and s > r , where n is an integer, r is a rational number, and s is a real number. A word is r+-free if it is (r+, 1)-free.
In [12], Ochem gives a non-iterative morphism τ : {a, b, c}∗ → {a, b}∗ where, for any 7

4
+
-free word w ∈ {a, b, c}∗, τ(w) is

5
2

+
-free, ( 7

3
+
, 3)-free, and ( 823

412
+
, 4)-free. In order to make use of this morphism we will use a construction given in [4], in

the context of the repetition threshold. Here Dejean gives an iterative morphism on {a, b, c}∗ that preserves 7
4

+
-freeness:

a → abcacbcabcbacbcacba
b → bcabacabcacbacabacb
c → cabcbabcabacbabcbac.

We replace an occurrence of an a with � in τ(b) where τ is the original morphism of Ochem, and get the 103-uniform
morphism τ̂ : {a, b, c}∗ → {a, b}∗ defined as follows:

a → aabaabbabaababbaabaabbabbaababaabbababbaabaabbabbaab
abbabaabbabbaabaabbababbaababaabbabbaababbabaabbabb

b → aabaabbabaababbaabaabbabbaababaabbababbaabaabbabbaab
abbabaabbabbaabaabbabaababba�baabbababbaababaabbabb

c → aabaabbabaababbaabaabbabbaababaabbababbaabaabbabaaba
bbaabaabbabbaababbabaabbabbaabaabbababbaababaabbabb.

In the following, let us define by v5 the fixed point of Dejean’s morphism. The infinite ternary word v5 is square-free
(and thus cube-free). Moreover, the infinite binary word τ(v5) is cube-free and does not have squares of the form xx, where
|x| ≥ 4. We will prove that the only extra square that τ̂ (v5) has is (abba)2.

Theorem 9. There exists a cube-free binary partial word with infinitely many holes such that the only full squares compatible
with factors of it are the ten squares in Remark 1 as well as the square (abba)2.
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Proof. Assume for the sake of a contradiction that there aremore than eleven full distinct squares compatiblewith factors of
τ̂ (v5). Since τ̂ (v5) has been obtained from τ(v5) by replacing some a’s by �’s, any square in τ̂ (v5) not compatible with any of
the ten above mentioned full squares must be of the form u�u′vbv′ for some partial words u, u′, v, v′ such that u�u′

↑ vbv′,
|u| = |v| and |u′

| = |v′
|.

If |u′
| ≥ 12, then u′ must have the factor of length 12 following the � in τ̂ (b), baabbababbaa, as a prefix. Thus v′ must have

a prefix compatible with baabbababbaa. One can check that this pattern is compatible with only factors following either an
a or a �. If |u| ≥ 12, then u must have abbabaababba as a suffix (thus v must have a suffix compatible with abbabaababba).
Again, it can be checked that this pattern is compatible with only factors preceding either an a or a �.

Finally, we can check that if |u| < 12 and |u′
| < 12, the only square in τ̂ (v5) not compatible with any of the ten squares

in Remark 1 is that where u = v = a and u′
= v′

= ba. �

4. Conclusion

In this paper, we have given, in particular, a complete answer to the question of how the sequence {gh(n)} behaves. To
summarize these results, we provide Table 1 for the gh(n)’s where the undefined cases are denoted by −.

What if we increase the size of the alphabet? Is it possible to get fewer squares? An upper bound of two squares is given
in the following theorem.

Theorem 10 ([2,8]). There exist infinitely many partial words with infinitely many holes over the three-letter alphabet {a, b, c}
such that the only full squares compatible with factors of it are bb and cc.

Is it possible to reduce the bound to one square? In fact, any infinite partial word with a hole after the first position is
such that at least two distinct full squares are compatible with factors of it (and hence any infinite partial word with more
than one hole satisfies the property). To see this, assuming that there exists an infinite partial word u with a hole after the
first position such that only one full square is compatible with factors of u, it must be the case that u has a factor of the form
�� or a�b for some distinct letters a, b (yielding in both cases the full squares aa and bb), or a�a for some letter a (yielding
the squares aa and (ab)2, where b is a letter not necessarily distinct from a).

We now build an infinite partial word with one hole over the ternary alphabet {a, b, c} such that the only full square
compatible with factors of it is aa. By the above, the position of the hole must be the first. Let us first recall the morphism
φ : {a, b, c}∗ → {a, b, c}∗ with φ(a) = abc , φ(b) = ac and φ(c) = b, whose fixed point σ = φω(a) is square-free [10]. In
addition, σ does not contain the factors aba and cbc.

Theorem 11. The only full square compatible with factors of �σ , an infinite partial word with one hole over the three-letter
alphabet {a, b, c}, is aa.

Proof. Let us assume that there exists a square in �σ other than �a. It is easy to check that no such square occurs in the
prefix of length 10 of �σ . It follows that this square should be of the form �aueau′, for some letter e ∈ {a, b, c} and some
non-empty words u = u′. Since σ is square-free, it follows that either e = b or e = c. We know that aueau′ is a prefix of
φm(a), for some integer m. It follows that after another m iterations we will get the prefix φm(au)φm(e)φm(a). Since e = b
or e = c , it follows that ifm is even, then φm(e) ends in e. Hence, we get that σ contains the factor eφm(a). But since aueau′

is a prefix of φm(a), we get a contradiction with the fact that σ is square-free.
Thus, m is odd. Since φ is prolongable on a we have that φm+1(a) = φm(a)φ(v), for some word v. Moreover, a later

iteration of our factor will appear somewhere in the word. Hence, from

φ(φm(e)φm(a)) = φm+1(e)φm+1(a) = φm+1(e)φm(a)φ(v)

we get that φm(a) is preceded by the last symbol of φm+1(e), which is e sincem is odd. We get a contradiction since eaueau′

cannot be a factor of σ . �
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