Well-mixed permutations KAIST POW 2024-02

김찬우, 연세대학교 수학과 22 학번

24 March 2024

Problem. A permutation $\phi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ is called a well-mixed if $\phi(\{1,2, \ldots, k\}) \neq\{1,2, \ldots, k\}$ for each $k<n$. What is the number of well-mixed permutations of $\{1,2, \ldots, 15\}$?

Solution.

Notation. $[a, b]$ is a set of integers n satisfying $a \leq n \leq b$. $[1, n]$ is sometimes simply denoted as $[n]$. The set of all permutations of $[n]$ is denoted as S_{n}. Let ω_{n} be the number of well-mixed permutations of $[n]$. For the formal power series $F(x)=\sum_{n \geq 0} f_{n} x^{n}$, define $\left[x^{n}\right] F(x)$ as f_{n}.

Definition. For $\sigma_{1} \in S_{n_{1}}, \ldots, \sigma_{r} \in S_{n_{r}}$, the merged permutation $\pi=\left[\sigma_{1}, \ldots, \sigma_{r}\right] \in$ $S_{n_{1}+\cdots+n_{r}}$ of $\sigma_{1}, \ldots, \sigma_{r}$ is given by

$$
\pi(i)=n_{1}+\cdots+n_{j-1}+\sigma_{j}\left(i-n_{1}-\cdots-n_{j-1}\right)
$$

where $j \in[r]$ is the smallest number such that $n_{1}+\cdots+n_{j} \geq i$. Empty sums are treated as 0 . The partition of $\left[n_{1}+\cdots+n_{r}\right]$ in the disjoint intervals $I_{i}=\left[\sum_{j=1}^{i-1} n_{j}+1, \sum_{j=1}^{i} n_{j}\right]$ is called as the partition corresponding to $\left[\sigma_{1}, \ldots, \sigma_{r}\right]$.

Lemma. Every permutation can be uniquely expressed as a merged permutation of well-mixed permutations.

Proof. We prove this by induction on n in $\sigma \in S_{n}$. Base case is trivial. For $n>1$, let $m \in[n]$ be the smallest number such that $\sigma([m])=[m]$. If $m=n, \sigma$ is itself well-mixed. If $m<n$, we have $\sigma=\left[\tau, \sigma^{\prime}\right]$ where τ and σ^{\prime} are the restrictions of σ to $[m]$ and $[m+1, n]$, respectively. By the induction hypothesis, σ^{\prime} is a merged permutation of well-mixed permutations, and thus so is σ.

To prove the uniqueness of this expression, assume that

$$
\sigma=\left[\sigma_{1}, \ldots, \sigma_{r}\right]=\left[\tau_{1}, \ldots, \tau_{s}\right] \in S_{n}
$$

where all σ_{i} and τ_{j} are well-mixed. Denote the partitions corresponding to $\left[\sigma_{1}, \ldots, \sigma_{r}\right]$ and $\left[\tau_{1}, \ldots, \tau_{s}\right]$ as I_{1}, \ldots, I_{r} and J_{1}, \ldots, J_{s} respectively. If we let k be the smallest integer such that $I_{k} \neq J_{k}$, then $I_{k}=[\alpha, \beta]$ and $J_{k}=[\alpha, \gamma]$ with $\beta \neq \gamma$. Without loss of generality, assume $\beta<\gamma$. Then we can see that $\tau_{k}([\beta-\alpha+1])=\sigma_{k}([\beta-\alpha+1])=[\beta-\alpha+1]$. This contradicts the fact that τ_{k} is well-mixed. Therefore, there is no such k and the given expression is unique.

Consider the generating functions $F(x)=\sum_{n \geq 1} \omega_{n} x^{n}$ and $G(x)=\sum_{n \geq 1}\left|S_{n}\right| x^{n}=$ $\sum_{n \geq 1} n!x^{n}$. According to the above lemma, we can observe the following equation between
the two generating functions:

$$
1+G(x)=\sum_{n \geq 0}\{F(x)\}^{n} \Longleftrightarrow F(x)=G(x)[1-F(x)]
$$

It follows that

$$
\omega_{n}=\left[x^{n}\right] F(x)=\left[x^{n}\right] G(x)[1-F(x)]=n!-\sum_{k=1}^{n-1}(n-k)!\omega_{k}
$$

Now we can get $\omega_{15}=1123596277863$ through simple calculation.

Beyond the answer

Define ψ_{k} as ω_{k} / k !. Now we can see that $\psi_{1}=1$ and

$$
\psi_{n}=1-\sum_{k=1}^{n-1} \psi_{k}\binom{n}{k}^{-1}
$$

Note that $\psi_{n} \leq 1$ for all $n \in \mathbb{N}$. Then for sufficiently large n, and $m \ll n$, we have

$$
\begin{aligned}
\sum_{k=1}^{m} \psi_{k}\binom{n}{k}^{-1} \leq 1-\psi_{n} & \leq \sum_{k=1}^{m} \psi_{k}\binom{n}{k}^{-1}+(n-m+1)\binom{n}{m+1}^{-1} \\
& \approx \sum_{k=1}^{m} \psi_{k}\binom{n}{k}^{-1}+\mathcal{O}\left(n^{-m}\right)
\end{aligned}
$$

Now, if we calculate a few terms of ψ_{k} directly and do a little bit of labor, we get the following asymptotic expression for ω_{n} :

$$
\omega_{n}=n!\left[1-\frac{2}{n}-\frac{1}{(n)_{2}}-\frac{4}{(n)_{3}}-\frac{19}{(n)_{4}}-\frac{110}{(n)_{5}}+\mathcal{O}\left(n^{-6}\right)\right]
$$

where $(n)_{k}=n(n-1)(n-2) \cdots(n-k+1)$. Some of the n value I calculated and the approximation using the above formula are as follows.

n	ω_{n}	approximation	relative error
18	5.6617×10^{15}	5.6675×10^{15}	0.1018%
19	1.0836×10^{17}	1.0844×10^{17}	0.0802%
20	2.1811×10^{18}	2.8125×10^{18}	0.0641%
21	4.6067×10^{19}	4.6091×10^{19}	0.0521%
22	1.0187×10^{21}	1.0191×10^{21}	0.0428%

Since the relative error is quite small, it seems that there was no mistake in the asymptotic equation. Phew!

One more thing to note is that when n is very large, most permutations are well-mixed. This matches well with our intuition.

