POW 2024-01

2021 \qquad Jiseok Chae

March 17, 2024

Let us begin with the following lemma.
Lemma 1. For any $n \geqslant 1$, let $A_{n, k}$ be the number of different outcomes we can get by rolling n dice with the sum of the faces congruent to k modulo 6 . Then, $A_{n, 0}=A_{n, 1}=\cdots=A_{n, 5}=6^{n-1}$.

Proof. Let $\mathrm{B}_{\mathrm{n}, \mathrm{m}}$ denote the number of different outcomes we can get by rolling n dice with the sum of the faces equal to m. Note that, for any fixed n, the generating function of $\left\{B_{n, m}\right\}_{m \geqslant 0}$ is $\left(x+x^{2}+\cdots+x^{6}\right)^{n}$. As $A_{n, k}=\sum_{t=0}^{\infty} B_{n, 6 t+k}$ for each $0 \leqslant k \leqslant 5$, it holds that

$$
A_{n, 0}+A_{n, 1} x+\cdots+A_{n, 5} x^{5} \equiv\left(x+x^{2}+\cdots+x^{6}\right)^{n} \quad\left(\bmod x^{6}-1\right)
$$

Now we use induction on n, to show that $A_{n, k}=6^{n-1}$ for each $0 \leqslant k \leqslant 5$. It is clear that $A_{1, k}=1$ for each $0 \leqslant k \leqslant 5$. Now, suppose that for some n, it holds that $A_{n, k}=6^{n-1}$ for each $0 \leqslant k \leqslant 5$. Then, one can observe that

$$
\begin{aligned}
A_{n+1,0}+A_{n+1,1} x+\cdots+A_{n+1,5} x^{5} & \equiv\left(x+x^{2}+\cdots+x^{6}\right)^{n+1} \\
& \equiv\left(A_{n, 0}+A_{n, 1} x+\cdots+A_{n, 5} x^{5}\right)\left(x+x^{2}+\cdots+x^{6}\right) \\
& \equiv 6^{n-1}\left(1+x+\cdots+x^{5}\right)\left(x+x^{2}+\cdots+x^{6}\right) \\
& \equiv 6^{n-1}\left(6+6 x+\cdots+6 x^{5}\right) \quad\left(\bmod x^{6}-1\right)
\end{aligned}
$$

where the last line can be verified by directly computing the product by expanding the terms. In particular, we get that $A_{n+1, k}=6^{n}$ for each $0 \leqslant k \leqslant 5$, which completes the proof.

For $k \geqslant 7$, it is clear that the probability of S_{1} being divisible by k is 0 , not $1 / k$.
Also, when $k=4$ or 5 , it is clear that the probability of S_{1} being divisible by k is $1 / 6$, not $1 / k$.
On the other hand, when $k=1,2,3$, or 6 , because k is a divisor of 6 , the sum of the faces is divisible by k if and only if the remainder of that sum when divided by 6 is divisible by k. Hence, from Lemma 1, it follows that for any $n \geqslant 1$ the probability of S_{n} being divisible by k is

$$
\frac{\sum_{0 \leqslant \ell \leqslant 5}^{k \mid \ell} A_{n, \ell}}{A_{n, 0}+A_{n, 1}+\cdots+A_{n, 5}}=\frac{\frac{6}{k} \cdot 6^{n-1}}{6 \cdot 6^{n-1}}=\frac{1}{k} .
$$

Therefore, all the positive integers that satisfy the desired property are exactly $1,2,3$, and 6 .

