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Simple algebra shows that
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whenever n > 3 or n < −1.

In other words, whenever n > 3 or n < −1, the quantity
√
n4 + n3 + n2 + n+ 1 lies in between

two consecutive numbers in 1
2Z, so n4 + n3 + n2 + n+ 1 can never be a perfect square.

It remains to consider the cases when −1 ⩽ n ⩽ 3. Brute forcing gives us

(−1)4 + (−1)3 + (−1)2 + (−1) + 1 = 1,
04 + 03 + 02 + 0 + 1 = 1,
14 + 13 + 12 + 1 + 1 = 5,
24 + 23 + 22 + 2 + 1 = 31,
34 + 33 + 32 + 3 + 1 = 121.

Therefore, the only integers n such that n4 +n3 +n2 +n+ 1 is a perfect square are −1, 0, and 3.
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