POW 2023-04

2021 \qquad Chae Jiseok

March 30, 2023

Simple algebra shows that

$$
\begin{aligned}
\left(n^{4}+n^{3}+n^{2}+n+1\right)-\left(n^{2}+\frac{n}{2}\right)^{2} & =\frac{3}{4}\left(n+\frac{2}{3}\right)^{2}+\frac{2}{3} \\
\left(n^{2}+\frac{n}{2}+\frac{1}{2}\right)^{2}-\left(n^{4}+n^{3}+n^{2}+n+1\right) & =\frac{1}{4}(n-3)(n+1)
\end{aligned}
$$

and thus

$$
\left(n^{2}+\frac{n}{2}\right)^{2}<n^{4}+n^{3}+n^{2}+n+1<\left(n^{2}+\frac{n}{2}+\frac{1}{2}\right)^{2} \quad \text { whenever } n>3 \text { or } n<-1 .
$$

In other words, whenever $n>3$ or $n<-1$, the quantity $\sqrt{n^{4}+n^{3}+n^{2}+n+1}$ lies in between two consecutive numbers in $\frac{1}{2} \mathbb{Z}$, so $n^{4}+n^{3}+n^{2}+n+1$ can never be a perfect square.

It remains to consider the cases when $-1 \leqslant n \leqslant 3$. Brute forcing gives us

$$
\begin{aligned}
(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1 & =1, \\
0^{4}+0^{3}+0^{2}+0+1 & =1, \\
1^{4}+1^{3}+1^{2}+1+1 & =5, \\
2^{4}+2^{3}+2^{2}+2+1 & =31, \\
3^{4}+3^{3}+3^{2}+3+1 & =121 .
\end{aligned}
$$

Therefore, the only integers n such that $n^{4}+n^{3}+n^{2}+n+1$ is a perfect square are $-1,0$, and 3 .

