POW \#2023-03

20190497 Jongseo Lee

School of Computing, KAIST

Problem. Determine the minimum number of hyperplanes in \mathbb{R}^{n} that do not contain the origin but they together cover all points in $\{0,1\}^{n}$ except the origin.

Solution. We claim that the answer is $n+1$. To show this, we begin with a well-known lemma. We defer its proof.
Lemma 1. (Combinatorial Nullstellensatz) Let \mathbb{F} be a field and $f \in \mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ be a polynomial. Say $\operatorname{deg}(f)=d=\sum_{i=1}^{n} d_{i}$ and assume that the coefficient of $\prod_{i=1}^{n} x_{i}^{d_{i}} \neq 0$. If $L_{1}, L_{2}, \cdots, L_{n} \subseteq \mathbb{F}$ satisfies $\left|L_{i}\right|>d_{i}$,

$$
\exists a_{1} \in L_{1}, \cdots, a_{n} \in L_{n} \text { s.t. } f\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq 0 .
$$

First, we will show that we need at least n hyperplanes. Let $\mathcal{H}_{1}, \mathcal{H}_{2}, \cdots, \mathcal{H}_{m}$ be hyperplanes covering $\{0,1\}^{n}$ except the origin. Say $\mathcal{H}_{i}=\left\{x \in \mathbb{R}^{n}: a_{i} \cdot x=b_{i}\right\}$ where $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. Define the polynomial P of degree m as

$$
P\left(x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{m}\left(a_{i} \cdot x-b_{i}\right) .
$$

Now, we claim that $m=\operatorname{deg}(P) \geq n$.
Suppose to the contrary so that $m=\operatorname{deg}(P)<n$. We have $P(\overrightarrow{0}) \neq 0$ but $P(\vec{x})=0$ for all $\vec{x} \in\{0,1\}^{n} \backslash\{\overrightarrow{0}\}$. Define $Q\left(x_{1}, x_{2}, \cdots, x_{n}\right)=P\left(x_{1}, x_{2}, \cdots, x_{n}\right)-\alpha \prod_{i=1}^{n}\left(x_{i}-1\right)$ by choosing appropriate nonzero α so that $Q(\overrightarrow{0})=0$. Note that $Q(\vec{x})=0$ for each $x \in\{0,1\}^{n} \backslash\{\overrightarrow{0}\}$, too (because both terms are zero). Note that the coefficient of $\prod_{i=1}^{n} x_{i}$ in Q is $\alpha \neq 0$. By Combinatorial Nullstellensatz, there exists $\vec{x} \in\{0,1\}^{n}$ such that $Q\left(x_{1}, x_{2}, \cdots, x_{n}\right) \neq 0$, which is a contradiction. Therefore, we have $m \geq n$.

Now, we will show that at most n hyperplanes suffice. There's straight forward construction:

- $H_{i}=\left\{\left(x_{1}, \cdots, x_{n}\right): x_{i}=1\right\}$ for each $1 \leq i \leq n$.

Proof of Lemma 1. We proceed with an induction on n. Note that the statement is trivial when $n=1$ so we may assume that $n>1$.

Without loss of generality, we may assume that $\left|L_{n}\right|=d_{n}+1$. Now, consider a polynomial $f_{n}\left(x_{n}\right)=\prod_{t \in L_{n}}\left(x_{n}-t\right)$ having degree of $d_{n}+1$. If we define a polynomial $h_{n}\left(x_{n}\right)=x_{n}^{d_{n}+1}-f_{n}\left(x_{n}\right)$, then the degree of $h_{n}\left(x_{n}\right)$ does not exceed d_{n}.

Now, consider a new polynomial \tilde{f} obtained from f by repetitively replacing $x_{n}^{d_{n}+1}$ to $h_{n}\left(x_{n}\right)$. For $x_{n} \in L_{n}$, we have $x_{n}^{d_{n}+1}=h_{n}(x)$ so that $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\tilde{f}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. We also know that the degree of $x_{1}^{d_{1}} x_{2}^{d_{2}} \cdots x_{n}^{d_{n}}$ is same in both f and \tilde{f}.

Write $\tilde{f}=\sum_{i=0}^{d_{n}} g_{i}\left(x_{1}, x_{2}, \cdots, x_{n-1}\right) x_{n}^{i}$ and apply the induction hypothesis to $g_{d_{n}}$. Then, we have $a_{1} \in L_{2}, \cdots, a_{n-1} \in L_{n-1}$ such that $g_{d_{n}}\left(a_{1}, \cdots, a_{n-1}\right) \neq 0$. After fixing $x_{1}=a_{1}, \cdots, x_{n-1}=a_{n-1}, \tilde{f}$ becomes a polynomial with degree d_{n} so there exists $a_{n} \in L_{n}$ such that $\tilde{f}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq 0$.

