POW#1: An Integral Sequence

2022 기영인 March 3, 2023

Proposition. If a finite sequence $\{a_1, ..., a_n\}$ *in* $\mathbb R$ *satisfies the following, then* $a_i \in \mathbb Z$ (i = 1, ..., n)

$$\sum_{i=1}^{m} a_i^3 = \left(\sum_{i=1}^{m} a_i\right)^2 (m = 1, ..., n) \cdots (1)$$

We prove by induction on n.

For n = 1, a_1 is either 0 or 1, thus the proposition stands true.

Now assume that the proposition holds for $n \le k$. Consider the case in which n = k + 1.

Let $J = \{i: a_i = 0\}$. If $J \neq \emptyset$, then the problem reduces to the case where $n \leq k$ because at least one a_i is negligible in eq. (1).

Now assume $J = \emptyset$. The fact that $\{1, ..., k + 1\}$ is a valid sequnce for $\{a_n\}$ can be shown easily.

Since
$$J = \emptyset$$
, $a_1 = 1$. For a valid sequence $\{a_n\}$ different from $\{1, ..., k+1\}$, let $j = \min\{i: a_i \neq i\}$. Clearly, $2 \le j \le k+1$.
$$\sum_{i=1}^{j-1} i^3 + a_j^3 = \left(\sum_{i=1}^{j-1} i + a_j\right)^2 \text{ implies } a_j^2 - a_j - k(k+1) = 0, \text{ and}$$

thus $a_i = -k$. Since $k^3 + (-k)^3 = 0$ and k + (-k) = 0, a_i cancels out a_{i-1} in eq. (1).

Therefore, the problem is reduced to the case where $n \le k - 1$.

By the induction hypothesis, the proposition holds for every positive integer n.