POW 2022-24

\qquad Chae Jiseok

December 9, 2022

Let \mathbb{F}_{2} denote the finite field of two elements. For each $i=1,2, \ldots, n$ let $\mathbf{v}_{i} \in \mathbb{F}_{2}^{n}$ be a vector where its $\mathrm{k}^{\text {th }}$ element is defined as

$$
\left(\mathbf{v}_{i}\right)_{k}= \begin{cases}1 & \text { if switch } s_{i} \text { controls } \ell_{k} \\ 0 & \text { otherwise }\end{cases}
$$

In other words, \mathbf{v}_{i} indicates which light bulbs are controlled by switch s_{i}.
Let us express the states of the light bulbs as a vector in \mathbb{F}_{2}^{n}, where 1 corresponds to a light bulb being turned on and 0 corresponds to it being turned off. Then by the rules of arithmetic in \mathbb{F}_{2}, we see that flipping the switch s_{i} is the equivalent of adding \mathbf{v}_{i} to the state vector. In this point of view, we claim the following:
Claim 1. There exists a subset $\left\{\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{m}}\right\}$ of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ whose sum of all the elements is equal to the all-ones vector $\mathbb{1}:=(1,1, \ldots, 1)$.

Note that if the claim holds, then by flipping the switches $\mathbf{s}_{i_{1}}, \ldots, \mathbf{s}_{i_{m}}$ once each, we will end up turning all the lights on.

Now we prove the claim. Define a matrix

$$
\mathbf{V}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{\mathrm{n}} \\
\mid & \mid & & \mid
\end{array}\right] \in \mathbb{F}_{2}^{n \times n}
$$

then for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$ we have $\mathbf{V x}=x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}$, so it suffices to show the existence of \mathbf{x} such that $\mathbf{V x}=\mathbb{1}$. Recall that we have the restriction that if s_{i} flips the status of ℓ_{j} then s_{j} flips the status of ℓ_{i}, which asserts that $\left(\mathbf{v}_{i}\right)_{j}=\left(\mathbf{v}_{\mathfrak{j}}\right)_{i} \Leftrightarrow\left(\mathbf{v}_{\boldsymbol{i}}\right)_{j}+\left(\mathbf{v}_{\mathfrak{j}}\right)_{i}=0$, or in other words that \mathbf{V} is symmetric. Hence it holds that

$$
\begin{aligned}
\mathbf{x}^{\top} \mathbf{V} \mathbf{x} & =\sum_{j=1}^{n} \sum_{i=1}^{n} x_{j}\left(\mathbf{v}_{i}\right)_{j} x_{i} \\
& =\sum_{i=1}^{n}\left(\mathbf{v}_{i}\right)_{i} x_{i}^{2}+\sum_{1 \leqslant i<j \leqslant n}\left(\left(\mathbf{v}_{i}\right)_{j}+\left(\mathbf{v}_{j}\right)_{i}\right) x_{i} x_{j} \\
& =\sum_{i=1}^{n}\left(\mathbf{v}_{i}\right)_{i} x_{i} \\
& =\mathbb{1}^{\top} \mathbf{x}
\end{aligned}
$$

where in the third line we use the fact that $\chi^{2}=x$ for any $x \in \mathbb{F}_{2}$, and in the fourth line we use the given condition that $i^{\text {th }}$ switch flips the status of the $i^{\text {th }}$ light hence $\left(\mathbf{v}_{i}\right)_{i}=1$ for all $i=1, \ldots, n$. In particular, if $\mathbf{x} \in \operatorname{ker}(\mathbf{V})$, then $\mathbf{V x}=\mathbf{0}$ so we must have $\mathbb{1} \perp \mathbf{x}$. That is,

$$
\operatorname{ker}(\mathbf{V}) \subset(\operatorname{span}\{\mathbb{1}\})^{\perp} .
$$

Taking the orthogonal complements, we obtain

$$
\mathbb{1} \in \operatorname{span}\{\mathbb{1}\} \subset \operatorname{row} \operatorname{sp}(\mathbf{V}) .
$$

But \mathbf{V} is symmetric, so its row space is equal to its column space. Therefore, $\mathbb{1} \in \operatorname{colsp}(\mathbf{V})$, which means that there exists some $\mathbf{x} \in \mathbb{F}_{2}^{n}$ such that $\mathbf{V x}=\mathbb{1}$. The proof is now complete.

