POW2022-15 A Determinant of Stirling Numbers of Second Kind

Throughout the paper, we are to denote the Stirling numbers of second kind by the notation $\left\{\begin{array}{l}n \\ k\end{array}\right\}$.
Lemma. $\operatorname{det}\left[\begin{array}{cccc}1^{1} & 2^{1} & \cdots & n^{1} \\ 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 1^{n} & 2^{n} & \cdots & n^{n}\end{array}\right]=1!2!\cdots n!\forall n \in \mathbb{N}$.
pf. We prove by mathematical induction.
i) $n=1: \operatorname{det}[1]=1$!
ii) assume that $\operatorname{det}\left[\begin{array}{cccc}1^{1} & 2^{1} & \cdots & n^{1} \\ 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 1^{n} & 2^{n} & \cdots & n^{n}\end{array}\right]=1!2!\cdots n$! for some $n \geq 1$.

Let $A_{n+1}=\left[\begin{array}{ccc}1^{1} & \cdots & (n+1)^{1} \\ \vdots & \ddots & \vdots \\ 1^{n+1} & \cdots & (n+1)^{n+1}\end{array}\right]=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n+1}\end{array}\right]$.
$\operatorname{det} A_{n+1}$
$=\operatorname{det}\left[\begin{array}{c}v_{1} \\ v_{2}-(n+1) v_{1} \\ \vdots \\ v_{n+1}-(n+1) v_{n}\end{array}\right] \because$ determinant function is $(\mathrm{n}+1)$-linear and alternating
$=\operatorname{det}\left[\begin{array}{ccccc}1^{1} & 2^{1} & \cdots & n^{1} & (n+1)^{1} \\ -n 1^{1} & -(n-1) 2^{1} & \cdots & -1 n^{1} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -n 1^{n} & -(n-1) 2^{n} & \cdots & -1 n^{n} & 0\end{array}\right]$
$=(-1)^{(n+1)+1}(n+1) \operatorname{det}\left[\begin{array}{cccc}-n 1^{1} & -(n-1) 2^{1} & \cdots & -1 n^{1} \\ \vdots & \vdots & \ddots & \vdots \\ -n 1^{n} & -(n-1) 2^{n} & \cdots & -1 n^{n}\end{array}\right]$
$=(-1)^{2 n+2}(n+1)!\operatorname{det}\left[\begin{array}{cccc}1^{1} & 2^{1} & \cdots & n^{1} \\ 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 1^{n} & 2^{n} & \cdots & n^{n}\end{array}\right]$
$=1!2!\cdots(n+1)!$
Lemma. $\sum_{i=1}^{k} P(k, i)\left\{\begin{array}{l}n \\ i\end{array}\right\}=k^{n}$, where $P(k, i)=\frac{k!}{(k-i)!}$.
pf. Instead of a rigorous proof, we are to show this by using some combinatorial sense.
Consider we are placing n distinct objects in k distinct containers, allowing empty containers to exist. Now we count the number of cases by sorting them by the number of nonempty containers.
Say there are i nonempty containers. The number of ways to choose such containers is $\binom{n}{i}$. Once the containers are chosen, the number of ways to distribute among them is $i!\left\{\begin{array}{l}n \\ i\end{array}\right\}$, for $\left\{\begin{array}{c}n \\ i\end{array}\right\}$ is computed without considering the type of containers. Thus, the number of ways to distribute n distinct objects into i nonempty containers is $P(k, i)\left\{\begin{array}{l}n \\ i\end{array}\right\}$.

The preceding lemma directly gives the equation $\left\{\begin{array}{l}n \\ k\end{array}\right\}+\sum_{i=1}^{k-1} \frac{1}{(k-i)!}\left\{\begin{array}{l}n \\ i\end{array}\right\}=\frac{k^{n}}{k!}$.
Let $S=\left[\begin{array}{ccc}\left\{\begin{array}{c}m+1 \\ 1\end{array}\right\} & \cdots & \left\{\begin{array}{c}m+1 \\ n\end{array}\right\} \\ \vdots & \ddots & \vdots \\ \left\{\begin{array}{c}n+n \\ 1\end{array}\right\} & \cdots & \left\{\begin{array}{c}m+n \\ n\end{array}\right\}\end{array}\right]=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}\end{array}\right]$. i.e., $\alpha_{j}=\left[\begin{array}{c}\left\{\begin{array}{c}m+1 \\ j\end{array}\right\} \\ \vdots \\ \left\{\begin{array}{c}m+n \\ j\end{array}\right\}\end{array}\right]$.
$\operatorname{det} S$
$=\operatorname{det}\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}+\sum_{i=1}^{n-1} \frac{1}{(n-i)!} \alpha_{i}\end{array}\right] \because$ determinant function is n-linear and alternating
$=\operatorname{det}\left[\begin{array}{lll}\alpha_{1} & \cdots & \alpha_{n-1}+\sum_{i=1}^{n-2} \frac{1}{(n-1-i)!} \alpha_{i} \quad \alpha_{n}+\sum_{i=1}^{n-1} \frac{1}{(n-i)!} \alpha_{i}\end{array}\right]$
$=\operatorname{det}\left[\begin{array}{llll}\alpha_{1} & \alpha_{2}+\sum_{i=1}^{1} \frac{1}{(2-i)!} \alpha_{i} & \cdots & \alpha_{n}+\sum_{i=1}^{n-1} \frac{1}{(n-i)!} \alpha_{i}\end{array}\right]$
$=\operatorname{det}\left[\begin{array}{cccc}1^{m+1} / 1! & 2^{m+1} / 2! & \cdots & n^{m+1} / n! \\ 1^{m+2} / 1! & 2^{m+2} / 2! & \cdots & n^{m+2} / n! \\ \vdots & \vdots & \ddots & \vdots \\ 1^{m+n} / 1! & 2^{m+n} / 2! & \cdots & n^{m+n} / n!\end{array}\right] \because\left\{\begin{array}{l}n \\ k\end{array}\right\}+\sum_{i=1}^{k-1} \frac{1}{(k-i)!}\left\{\begin{array}{l}n \\ i\end{array}\right\}=\frac{k^{n}}{k!}$
$=\frac{1^{\mathrm{m}} 2^{m} \cdots n^{m}}{1!2!\cdots n!} \operatorname{det}\left[\begin{array}{cccc}1^{1} & 2^{1} & \cdots & n^{1} \\ 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 1^{n} & 2^{n} & \cdots & n^{n}\end{array}\right]$
$=\frac{(n!)^{m}}{1!2!\cdots n!} \operatorname{det}\left[\begin{array}{cccc}1^{1} & 2^{1} & \cdots & n^{1} \\ 1^{2} & 2^{2} & \cdots & n^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 1^{n} & 2^{n} & \cdots & n^{n}\end{array}\right]$
$=(n!)^{m} \because$ lemma

