POW 2022-14

The number of eigenvalues of a symmetric matrix

2018 김기수

September 16, 2022

Claim that A has n positive eigenvalues with multiplicity.

Assume that $\mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} \in \mathbb{R}^{2n}$ is an eigenvector of $A = \begin{bmatrix} O & B \\ B^T & C \end{bmatrix} \in M_{2n}(\mathbb{R})$ where \mathbf{v}_i is *n*-dimensional vectors for $i \in \{1, 2\}$. Let λ be the eigenvalue of \mathbf{v} . Observe that

$$A\mathbf{v} = \begin{bmatrix} O & B \\ B^T & C \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} B\mathbf{v}_2 \\ B^T\mathbf{v}_1 + C\mathbf{v}_2 \end{bmatrix} = \lambda \mathbf{v} = \begin{bmatrix} \lambda \mathbf{v}_1 \\ \lambda \mathbf{v}_2 \end{bmatrix}.$$

Note that the λ is always nonzero. Because *B* is invertible, one has $\mathbf{v}_2 = \lambda B^{-1} \mathbf{v}_1$. If nonzero \mathbf{v} has the eigenvalue 0, then $\mathbf{v}_2 = \mathbf{0}$, $B^T \mathbf{v}_2 + C\mathbf{0} = \mathbf{0}$ and $\mathbf{v}_1 = (B^T)^{-1}\mathbf{0} = \mathbf{0}$ hence $\mathbf{v} = \mathbf{0}$, which contradicts.

As λ is nonzero, write above equation by $\mathbf{v}_1 = \frac{1}{\lambda} B \mathbf{v}_2$ and $\frac{1}{\lambda} B^T B \mathbf{v}_2 + C \mathbf{v}_2 = \lambda \mathbf{v}_2$. To find eigenvalues of A is equivalent to find λ such that $(\lambda^2 I - \lambda C - B^T B) \mathbf{v} = \mathbf{0}$ has a nontrivial solution, i.e. $\det(\lambda^2 I - \lambda C - B^T B) = 0$.

Note that $B^T B$ and C are real symmetric matrix, hence so is A and eigenvalues of A are real.

Let note some basic facts about real symmetric matrices without proof.

Proposition 1. Suppose that M is a real symmetric matrix. Then the eigenvalues of M are real, and M is diagonalizable by orthogonal matrix, i.e. there exists an orthogonal matrix U so that $M = U^T \Lambda U$ where Λ is a diagonal matrix.

Proposition 2. Let M be a real symmetric matrix. M has strictly positive eigenvalues if and only if M is positive definite.

Observe that $M = B^T B$ is positive definite. For nonzero x, Bx is nonzero and $x^T B^T B x = |Bx|^2 > 0$. Choose a diagonalization $M = U^T \Lambda U$, and let $M^{-\frac{1}{2}} = U^T \Lambda^{-\frac{1}{2}} U$, where $\Lambda^{-\frac{1}{2}}$ is the diagonal matrix whose entries are the inverse square root of entries of Λ . Note that $\Lambda^{-\frac{1}{2}}$ and $M^{-\frac{1}{2}}$ are real symmetric matrix, as entries of Λ are strictly positive.

Observe that $M^{-\frac{1}{2}}CM^{-\frac{1}{2}}$ is real symmetric as $(M^{-\frac{1}{2}}CM^{-\frac{1}{2}})^T = M^{-\frac{1}{2}}C^TM^{-\frac{1}{2}} = M^{-\frac{1}{2}}CM^{-\frac{1}{2}}$. Choose orthogonal matrix V so that $V^TM^{-\frac{1}{2}}CM^{-\frac{1}{2}}V$ is diagonal.

Let $W = M^{-\frac{1}{2}}V$. One has $W^T M W = I$, and $W^T C W = D$ is a diagonal matrix.

 $\det(\lambda^2 I - \lambda C - M) = \det(W^T(\lambda^2 I - \lambda C - M)W) = \det(\lambda^2 I - \lambda D - I) = \det(\operatorname{diag}(\lambda^2 - d_i\lambda - 1)).$ The determinant is zero if and only if one of $\lambda^2 - d_i\lambda - 1 = 0$. By Vieta's theorem, there is *n* positive eigenvalues and *n* negative eigenvalues.

Consider what if we do not consider multiplicity. Let $1 \le k \le n$. Set B be the diagonal matrix with k distinct positive entries, and C = 0. One can easily check that A has k distinct positive eigenvalues.