# POW 2022-14 <br> The number of eigenvalues of a symmetric matrix 

$$
2018 \text { 김기수 }
$$

September 16, 2022

Claim that $A$ has $n$ positive eigenvalues with multiplicity.
Assume that $\mathbf{v}=\left[\begin{array}{l}\mathbf{v}_{1} \\ \mathbf{v}_{2}\end{array}\right] \in \mathbb{R}^{2 n}$ is an eigenvector of $A=\left[\begin{array}{cc}O & B \\ B^{T} & C\end{array}\right] \in M_{2 n}(\mathbb{R})$ where $\mathbf{v}_{i}$ is $n$-dimensional vectors for $i \in\{1,2\}$. Let $\lambda$ be the eigenvalue of $\mathbf{v}$. Observe that

$$
A \mathbf{v}=\left[\begin{array}{cc}
O & B \\
B^{T} & C
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{c}
B \mathbf{v}_{2} \\
B^{T} \mathbf{v}_{1}+C \mathbf{v}_{2}
\end{array}\right]=\lambda \mathbf{v}=\left[\begin{array}{l}
\lambda \mathbf{v}_{1} \\
\lambda \mathbf{v}_{2}
\end{array}\right]
$$

Note that the $\lambda$ is always nonzero. Because $B$ is invertible, one has $\mathbf{v}_{2}=\lambda B^{-1} \mathbf{v}_{1}$. If nonzero $\mathbf{v}$ has the eigenvalue 0 , then $\mathbf{v}_{2}=\mathbf{0}, B^{T} \mathbf{v}_{2}+C \mathbf{0}=\mathbf{0}$ and $\mathbf{v}_{1}=$ $\left(B^{T}\right)^{-1} \mathbf{0}=\mathbf{0}$ hence $\mathbf{v}=\mathbf{0}$, which contradicts.

As $\lambda$ is nonzero, write above equation by $\mathbf{v}_{1}=\frac{1}{\lambda} B \mathbf{v}_{2}$ and $\frac{1}{\lambda} B^{T} B \mathbf{v}_{2}+C \mathbf{v}_{2}=$ $\lambda \mathbf{v}_{2}$. To find eigenvalues of $A$ is equivalent to find $\lambda$ such that $\left(\lambda^{2} I-\lambda C-\right.$ $\left.B^{T} B\right) \mathbf{v}=\mathbf{0}$ has a nontrivial solution, i.e. $\operatorname{det}\left(\lambda^{2} I-\lambda C-B^{T} B\right)=0$.

Note that $B^{T} B$ and $C$ are real symmetric matrix, hence so is $A$ and eigenvalues of $A$ are real.

Let note some basic facts about real symmetric matrices without proof.
Proposition 1. Suppose that $M$ is a real symmetric matrix. Then the eigenvalues of $M$ are real, and $M$ is diagonalizable by orthogonal matrix, i.e. there exists an orthogonal matrix $U$ so that $M=U^{T} \Lambda U$ where $\Lambda$ is a diagonal matrix.

Proposition 2. Let $M$ be a real symmetric matrix. $M$ has strictly positive eigenvalues if and only if $M$ is positive definite.

Observe that $M=B^{T} B$ is positive definite. For nonzero $x, B x$ is nonzero and $x^{T} B^{T} B x=|B x|^{2}>0$. Choose a diagonalization $M=U^{T} \Lambda U$, and let $M^{-\frac{1}{2}}=U^{T} \Lambda^{-\frac{1}{2}} U$, where $\Lambda^{-\frac{1}{2}}$ is the diagonal matrix whose entries are the inverse square root of entries of $\Lambda$. Note that $\Lambda^{-\frac{1}{2}}$ and $M^{-\frac{1}{2}}$ are real symmetric matrix, as entries of $\Lambda$ are strictly positive.

Observe that $M^{-\frac{1}{2}} C M^{-\frac{1}{2}}$ is real symmetric as $\left(M^{-\frac{1}{2}} C M^{-\frac{1}{2}}\right)^{T}=M^{-\frac{1}{2}} C^{T} M^{-\frac{1}{2}}=$ $M^{-\frac{1}{2}} C M^{-\frac{1}{2}}$. Choose orthogonal matrix $V$ so that $V^{T} M^{-\frac{1}{2}} C M^{-\frac{1}{2}} V$ is diagonal.

Let $W=M^{-\frac{1}{2}} V$. One has $W^{T} M W=I$, and $W^{T} C W=D$ is a diagonal matrix.
$\operatorname{det}\left(\lambda^{2} I-\lambda C-M\right)=\operatorname{det}\left(W^{T}\left(\lambda^{2} I-\lambda C-M\right) W\right)=\operatorname{det}\left(\lambda^{2} I-\lambda D-I\right)=$ $\operatorname{det}\left(\operatorname{diag}\left(\lambda^{2}-d_{i} \lambda-1\right)\right)$. The determinant is zero if and only if one of $\lambda^{2}-d_{i} \lambda-1=$ 0 . By Vieta's theorem, there is $n$ positive eigenvalues and $n$ negative eigenvalues.

Consider what if we do not consider multiplicity. Let $1 \leq k \leq n$. Set $B$ be the diagonal matrix with $k$ distinct positive entries, and $C=0$. One can easily check that $A$ has $k$ distinct positive eigenvalues.

