POW 2022-13
 Inequality involving sums with different powers

$$
2018 \text { 김기수 }
$$

Observe that the series $\sum_{n=0}^{\infty} \frac{1}{(x+n)^{2}}$ and $\sum_{n=0}^{\infty} \frac{1}{(x+n)^{3}}$ are absolutely convergent on $x \geq 1$. Because of the absolute convergence, we can reorder the sum and rewrite the left hand side by

$$
\sum_{n=0}^{\infty} \frac{1}{(x+n)^{4}}+2 \sum_{n=0}^{\infty} \sum_{m=n+1}^{\infty} \frac{1}{(x+n)^{2}} \frac{1}{(x+m)^{2}}
$$

Rearrange the sum once more, we can write it by

$$
2 \sum_{n=0}^{\infty}\left(\left(\sum_{m=n}^{\infty} \frac{1}{(x+n)^{2}(x+m)^{2}}\right)-\frac{1}{2(x+n)^{4}}\right)
$$

and

$$
2 \sum_{n=0}^{\infty} \frac{1}{(x+n)^{2}}\left(-\frac{1}{2(x+n)^{2}}+\sum_{m=n}^{\infty} \frac{1}{(x+m)^{2}}\right)
$$

Proposition 1. Let $x_{0} \geq 1$ be a real number. Then the following inequality holds:

$$
\sum_{n=0}^{\infty} \frac{1}{\left(x_{0}+n\right)^{2}} \geq \frac{1}{2 x_{0}^{2}}+\frac{1}{x_{0}}
$$

Proof. Let consider some subsets of \mathbb{R}^{2} which is related to the graph of $y=\frac{1}{x^{2}}$. Let $A_{n}=\left(x_{0}+n, x_{0}+n+1\right] \times\left(0, \frac{1}{\left(x_{0}+n\right)^{2}}\right)$ for nonnegative integer n and $A=\bigcup_{n=0}^{\infty} A_{n}$. Note that the area of A is $\sum_{n=0}^{\infty} \frac{1}{\left(x_{0}+n\right)^{2}}$, the left hand side of the desired inequality.

Let $B=\left\{(x, y): x>x_{0} \wedge 0<y<\frac{1}{x^{2}}\right\}, C_{n}=\left\{(x, y): x_{0}+n<x<\right.$ $\left.x_{0}+n+1 \wedge l_{n}(x)<y<\frac{1}{\left(x_{0}+n\right)^{2}}\right\}$ where the graph of $y=l_{n}(x)$ is the unique line containing two points $\left(x_{0}+n, \frac{1}{\left(x_{0}+n\right)^{2}}\right)$ and $\left(x_{0}+n+1, \frac{1}{\left(x_{0}+n+1\right)^{2}}\right)$. Since the function $y=\frac{1}{x^{2}}$ is convex, the line l_{n} is above the graph $y=\frac{1}{x^{2}}$ hence C_{n} is disjoint from B for every n. Also, note that each pair of C_{n} is disjoint. Deduce that the area of the union of B and C_{n} is the sum of area of B and C_{n}.

From the calculus, the area of B is equal to $\int_{x_{0}}^{\infty} \frac{1}{t^{2}} \mathrm{~d} t=\frac{1}{x_{0}}$. The area of C_{n} is equal to $\frac{1}{2}\left(\frac{1}{\left(x_{0}+n\right)^{2}}-\frac{1}{\left(x_{0}+n+1\right)^{2}}\right)$. Summing all of that, the area of their union is $\frac{1}{2 x_{0}^{2}}+\frac{1}{x_{0}}$.

Observe that B and C_{n} are contained in A, so their union is contained in A. We can deduce the desired inequality by comparing area of sets which are in the containing relation.

This result also can be shown (or at least seems feasible) by drawing the shape of A, B and C by hand.

The blue area on the left side represents A. The entire box on the right side represents A_{n}. There are two sections of red area: the above one represents C_{n}, and the below one represents $B \cap A_{n}$.

Using this result, the left hand side of the above formula has the lower bound

$$
2 \sum_{n=0}^{\infty} \frac{1}{(x+n)^{2}}\left(-\frac{1}{2(x+n)^{2}}+\left(\frac{1}{2(x+n)^{2}}+\frac{1}{(x+n)}\right)\right)=2 \sum_{n=0}^{\infty} \frac{1}{(x+n)^{3}}
$$

which is obtained by replacing $\sum_{m=n}^{\infty} \frac{1}{(x+m)^{2}}=\sum_{m=0}^{\infty} \frac{1}{((x+n)+m)^{2}}$ into $\frac{1}{2(x+n)^{2}}+$ $\frac{1}{(x+n)}$.

