POW 2022-11

Groups with torsions

2018 김기수

1 Brief Explanation

A countable group is embeddable in a 2-generated group. Consider the direct sum $C=\bigoplus_{p} \mathbb{Z} / p \mathbb{Z}$ where p runs over every prime. Observe that C has an element of order p for any prime p, and C is countable. Embedding it into some 2-generated group G. Then G is a finitely generated group which has a p-torsion element for any prime p. This is the desired result.

2 Solution

Definition 1. Let G be a group, A, B be isomorphic subgroups of G with an isomorphism $\phi: a \rightarrow b$. The HNN extension of G related to this data is the group with presentation

$$
\left\langle G, t \mid t^{-1} a t=\phi(a), \forall a \in A\right\rangle .
$$

Theorem 1. Any HNN extension of G embeds G.
One may refer https://doi.org/10.1112/jlms/s1-24.4.247 for a proof.
Theorem 2. Let C be a group with a countable underlying set. There exists a group G generated by two elements and an injective homomorphism $\iota: C \hookrightarrow G$.

Also, one may refer https://doi.org/10.2307/2324618 for another proof.
Proof. Let $\left\{c_{i}: i \in \mathbb{Z}_{\geq 0}\right\}$ be the underlying set of C where c_{0} is the identity element. Let $F=C *\langle a, b\rangle$ be the free product of C and the free group of generators $\{a, b\}$. Observe that the subgroups generated by $\left\{b^{i} a b^{-i}: i \in \mathbb{Z}_{\geq 0}\right\}$ and $\left\{c_{i} a^{i} b a^{-i}: i \in \mathbb{Z}_{\geq 0}\right\}$ are free groups with countable generating sets, hence they are isomorphic. Consider the HNN extension of F with these isomorphic subgroups:

$$
\left\langle F, t \mid t^{-1} b^{i} a b^{-i} t=c_{i} a^{i} b a^{-i} \forall i \in \mathbb{Z}_{\geq 0}\right\rangle
$$

This embeds F hence it also embeds C. Since $b=t a t^{-1}$ and $c_{i}=t^{-1} b^{i} a b^{-i} t a^{-i} b^{-1} a^{i}$, every element of F is generated by t and a. Therefore, this group is generated by two elements.

Let $C=\bigoplus_{p} \mathbb{Z} / p \mathbb{Z}$ be the direct sum of cyclic groups of order p, where p runs over every prime number. Observe that the underlying set of C is the union of the increasing sequence

$$
S_{n}=\left\{\left(x_{p}\right) \in C: x_{p}=0 \text { for } p>n\right\}
$$

Each S_{n} is finite hence the union is countable. By the theorem, there exists a group G generated by two elements, in particular which is finitely generated, and an injective homomorphism $\iota: \bigoplus_{p} \mathbb{Z} / p \mathbb{Z} \hookrightarrow G$. Let p be a prime. Observe that $x=\left(x_{p}\right) \in C$ given by $x_{p}=1$ and $x_{q}=0$ for $q \neq p$ is the element of order p. Since ι is injective, $\iota(x)$ is not trivial. As $[p] x=0,[p] \iota(x)=\iota([p] x)=\iota(0)=0$ and $\iota(x)$ is an element of G which has order p.

