POW 2022-08

Two sequences

2018 김기수

At $n=80143857>3$, one has $a_{n}=25510582$ and $b_{n}=25510583$ so that $a_{n} \neq b_{n}$.
Proposition 1 (approximation of π). $3.14159265358979323846<\pi<3.14159265358979323847$.
See https://oeis.org/A000796.
Observe that $\frac{80143857}{\pi}<\frac{10^{20} .80143857}{314159265358979323846}<25510582$. The first inequality is from the previous proposition. The second inequality is derived from the direct calculation:

$$
80143857 \cdot 10^{20}<8014385700000001477277938372=25510582 \cdot 314159265358979323846 .
$$

Lemma 1. Let $g:[0,1] \rightarrow \mathbb{R}$ be a differentiable function such that $g(0)=0$ and $g^{\prime}(x)<0$ for $0<x<1$.
Then $g(x) \leq 0$ in $(0,1)$.
This is the direct result of the fundamental theorem of calculus.
Proposition 2. For $0<x<1$, $\sin x \leq x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}$.
Proof. Let investigate the funciton $g(x)=\sin x-x+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}$. One has $g^{(5)}(x)=\cos x-1<0$ on $0<x<1$. Note that $g^{(n)}(0)=0$ for $n \in\{0,1,2,3,4\}$. Repeatedly applying the previous lemma, one obtains the desired result.

Let $x=\frac{314159265358979323847}{10^{20} .80143857}$. Obviously $0<x<1$. One has $\sin \frac{\pi}{80143857}<\sin x \leq \frac{1}{x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}}$ and $\frac{1}{x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}}<\frac{1}{\sin \frac{\pi}{80143857}}$ from the previous proposition. The direct calculation shows that $25510582<$ $\frac{1}{x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}}$ hence $25510582<\frac{1}{\sin \frac{\pi}{80143857}}$.

Therefore, at $n=80143857$, one has

$$
\frac{n}{\pi}<25510582<\frac{1}{\sin \frac{\pi}{n}}
$$

so that their ceilings are different.

