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Problem. Prove the following identity for x,y € R3 :
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Solution. By substituting z = x + 2/, we see that / T pdz = / ———dz.
re | —2? |y — 22 re |2 ly — @ — 2[?

Hence it is sufficient to consider for x # 0
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Before we begin our proof, let us observe that the integration F'(z) is well defined for  # 0; two
singularities z = 0 and z = = can be handeld as
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o If |z| < |z|/2, then |z — z| > |z|/2 thus / T —pd7 < C/lxl.
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o It [z — 2| < [z]/2, then |2| > |&]/2 thus / 11 <o/l
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Finally, if |z| > 2|z|, then |z — z| > |2| — |z| > |2|/2 thus
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/| ———dz < C/|z|.
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In addition, F'(x) is spherically symmetric, i.e., there exists a function f : (0,00) — R such that
F(z) = f(|z]) for all = # 0. The proof is easy; for any U € O(3), by substituting z = Uz,
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It allows us to restrict = (r,0,0) for simplicity. Then by Fubini’s theorem and polar transform,
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The following fact is useful ;
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Hence
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Let us prove f(r) =1/r.



By substituting z; = rw,

rdw = — - dw.

jw =12 = |w|?
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If we can show f(1) = 1, the proof is completed. By substituting w = ~%,
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Note that the above two integrals are the same ; set © = 1/y
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Hence by putting z = /=,
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from the following Lemma and simple fact / yzo & yl dy = / xQO & xl dy. (y = 1/x) Tt ends the
0 - 1 -
proof. O
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Lemma. / 20gy dy = ﬂ-—.

Proof. We evaluate the integral by the method of complex analysis. Taking the usual branch cut
log =z
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counterclockwise contour C' = C; U Cy U C3 U Cy given by (e — 07, R — +00),

e (C1:z2=1t e<t<R,
e Cy:z=Re" 0<60<7/2,
e (3:z=it; e<t<R,

e Cy:z=ce; 0<0<T1/2.

along the negative real-axis (Arg z € (—m, 7)), define ¢(z) = We integrate ¢(z) over the

Since ¢ is analytic in the region enclosed by C' (note that z = 1 is a removable singularity), Cauchy

4
Integral Theorem is applied ; / d(2)dz = Z d(z)dz = 0.
c k=1"Ck

Now we are taking the limits e — 0%, R — +oc0 so that
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On the other hand,
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In conclusion,
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