POW 2022-03 Sum of vectors

Jo Yuri

Problem 1 For $k, n \geq 1$, let v_{1}, \cdots, v_{n} be unit vectors in \mathbb{R}^{k}. Prove that we can always choose signs $\varepsilon_{1}, \cdots, \varepsilon_{n} \in\{-1,+1\}$ such that $\left|\sum_{i=1}^{n} \varepsilon_{i} v_{i}\right| \leq \sqrt{n}$.

Proof. We prove it by mathematical induction. To this end, let
$S_{k}=\left\{n \geq 1: \forall\right.$ unit vectors $v_{1}, \cdots, v_{n} \in \mathbb{R}^{k}, \exists \varepsilon_{1}, \cdots, \varepsilon_{n} \in\{-1,+1\}$ such that $\left.\left|\sum_{i=1}^{n} \varepsilon_{i} v_{i}\right| \leq \sqrt{n}\right\}$.
First $1 \in S_{k}$ is obvious. Now let us assume $n \in S_{k}$ for some $n \geq 1$ and let v_{1}, \cdots, v_{n+1} be arbitrarily chosen unit vectors in \mathbb{R}^{k}. From the hypothesis, there exist signs $\varepsilon_{1}, \cdots, \varepsilon_{n} \in\{-1,+1\}$ such that $|w| \leq \sqrt{n}$ for $w=\sum_{i=1}^{n} \varepsilon_{i} v_{i}$. Since

$$
\left|w \pm v_{n+1}\right|^{2}=|w|^{2}+\left|v_{n+1}\right|^{2} \pm 2\left(w \cdot v_{n+1}\right) \leq n+1 \pm 2\left(w \cdot v_{n+1}\right)
$$

we can choose $\varepsilon_{n+1} \in\{-1,+1\}$ such that $\left|w+\varepsilon_{n+1} v_{n+1}\right|^{2} \leq n+1$. Hence $n+1 \in S_{k}$ and it ends the proof by the mathematical induction.

Proof. For v_{1}, \cdots, v_{n} unit vectors in \mathbb{R}^{k}, consider a random variable

$$
T\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)=\left|\sum_{i=1}^{n} \varepsilon_{i} v_{i}\right|^{2}:\{-1,1\}^{n} \rightarrow[0, \infty)
$$

The vector norm is computed as

$$
T(\varepsilon)=\sum_{i, j} \varepsilon_{i} \varepsilon_{j} v_{i} \cdot v_{j}=\sum_{i, j}\left|v_{i}\right|^{2}+2 \sum_{i<j} \varepsilon_{i} \varepsilon_{j} v_{i} \cdot v_{j}=n+2 \sum_{i<j} \varepsilon_{i} \varepsilon_{j} v_{i} \cdot v_{j} .
$$

Since the average of T is

$$
E[T]=\frac{1}{2^{n}} \cdot \sum_{\varepsilon \in\{-1,1\}^{n}} T(\varepsilon)=n
$$

there exists $\varepsilon_{1}, \cdots, \varepsilon_{n} \in\{-1,+1\}$ such that $T(\varepsilon) \leq n$ and it ends the proof.

