POW 2021-21: Different Unions Image: Pow 2021-21: Different Unions

Problem. Let F be a family of nonempty subsets of $[n] = \{1, \dots, n\}$ such that no two disjoint subsets of F have the same union. In other words, for $F = \{A_1, A_2, \dots, A_k\}$, there exists no two sets $I, J \subseteq [k]$ with $I \cap J = \emptyset$ and $\bigcup_{i \in J} A_i = \bigcup_{i \in J} A_j$. Determine the maximum possible size of F.

Solution. Suppose that F has size k > n.

Let us define the *binary vector form* of $A \subset [n]$ as a vector $v \in \{0,1\}^n$ such that the ith element of v is 1 if $i \in A$, and 0 otherwise. (For instance, the vector form of $\{1,2,4\} \in [5]$ becomes (1,1,0,1,0).)

Now let us define a binary matrix $M \in \{0,1\}^{k \times n}$ such that each row $v_i \in \{0,1\}^n$ is a vector form of the set $A_i \in F$ for $i = 1, \dots, k$. Since k > n, the matrix M must have rank at most n. Therefore there exists $c_i \in \mathbb{R}$ for $i = 1, \dots, k$ such that:

$$\sum_{i=1}^k c_i v_i = \mathbf{0}$$

Now we can eliminate weights $c_i = 0$ (*if any*) and move terms s.t. $c_i < 0$ to the RHS to rewrite as:

$$u := \sum_{S_1} c'_i v_i = \sum_{S_2} c'_i v_i, \tag{1}$$

where $S_1 := \{i : c_i > 0\}, S_2 := \{i : c_i < 0\}, c'_i = c_i \text{ for } i \in S_1 \text{ and } c'_i = -c_i \text{ for } i \in S_2.$

Note that $S_1 \cap S_2 = \emptyset$ by definition. Also, note that $c'_i > 0$ for all $i \in S_1 \cup S_2$ (which is rigorously okay since F contains 'nonempty' subsets of [n], and hence no v_i is a zero vector). Since $v_i \in \{0, 1\}^n$ for all $i \in k$ and $c'_i > 0$ for all $i \in S_1 \cup S_2$, the vector $u \in \mathbb{R}^n$ defined in (1) must have nonnegative elements.

Let us denote the set of indices of nonnegative entries of u as U. From $u := \sum_{S_1} c'_i v_i$ and $c'_i > 0$, observe that:

$$\begin{split} \ell \in U & \Leftrightarrow \quad u_{\ell} > 0 \text{ for some } \ell = [n] \\ & \Leftrightarrow \quad \exists \text{ (at least one) } i \in S_1 \text{ s.t. } v_i \text{ has } \ell^{\text{th}} \text{ element } 1 \\ & \Leftrightarrow \quad \exists \text{ (at least one) } i \in S_1 \text{ s.t. } \ell \in A_i \\ & \Leftrightarrow \quad \ell \in \bigcup_{i \in S_1} A_i \end{split}$$

and hence $U = \bigcup_{i \in S_1} A_i$. Similarly, from $u := \sum_{S_2} c'_i v_i$ and $c'_i > 0$, we also have $U = \bigcup_{j \in S_2} A_j$, and therefore $\bigcup_{i \in S_1} A_i = \bigcup_{j \in S_2} A_j$ for $S_1 \cap S_2 = \emptyset$. Therefore no possible cases exist for k > n.

Finally, we can always find F of size k = n, which is $F_{\text{max}} = \{\{1\}, \{2\}, \dots, \{n\}\}$. It is obvious that no two disjoint subsets of F_{max} have the same union, since W.L.O.G. if we label $A_i = \{i\}$ for $i = 1, \dots, n$, then we have

$$\bigcup_{i \in I} A_i = I \neq J = \bigcup_{j \in J} A_j$$

for all $I, J \subseteq [n]$ with $I \cap J = \emptyset$. Therefore the maximum possible size of F is [n].