POW 2021-22 Sum of Fractions

2021xxxx 조정휘(대학원생)

November 20, 2021

Problem. Determine all rational numbers that can be written as

1	1	1		1
$\overline{n_1}$	$+ \overline{n_1 n_2}$	$+ \overline{n_1 n_2 n_3}$	$+\cdots+$	$\overline{n_1n_2n_3\cdots n_k},$

where $n_1, n_2, n_3, \dots, n_k$ are positive integers greater than 1.

Answer: All rationals between 0 and 1.

From

$$0 < \frac{1}{n_1} + \frac{1}{n_1 n_2} + \dots + \frac{1}{n_1 n_2 \dots n_k} \le \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^k} < 1,$$

it is obvious that the result lies in (0, 1). Conversely, consider any rational $q_1 = a/b$ with two integers 0 < a < b. We can find the smallest integer $n_1 > 1$ with $n_1a \ge b$. Then we have

$$q_1 = \frac{1}{n_1} \left(1 + \frac{n_1 a - b}{b} \right).$$

Since $n_1a - b = (n_1 - 1)a + a - b < b + a - b = a$, the quotient $q_2 = (n_1a - b)/b$ is either zero or another rational between 0 and 1. If $q_2 = 0$, terminate here. Otherwise, repeat the same process again for q_2 to yield n_2 and q_3 , and so on. The process eventually stops because, by comparison on the numerator, one sees that always $q_n > q_{n+1}$ with the difference being no less than 1/b. As a result, one has

$$q_1 = \frac{1}{n_1} \left(1 + \frac{1}{n_2} \left(1 + \frac{1}{n_3} \cdots \left(1 + \frac{1}{n_k} \right) \cdots \right) \right)$$

for some integer k. Multiplying the terms out, we get the desired result.