POW 2021-21 Different unions
 전해구(기계공학과 졸업생)

November 12, 2021

Problem

Let F be a family of nonempty subsets of $[n]=\{1, \ldots, n\}$ such that no two disjoint sub-sets of F have the same union. Determine the maximum possible size of F .

Sol

Let F_{1} be a family of nonempty subsets of $[\mathrm{n}]$ s.t $\{1\} \subseteq \mathrm{s}$ for $\forall \mathrm{s} \in \mathrm{F}_{1}$ and $\mathrm{F}_{1}^{\mathrm{c}}=\mathrm{P}([\mathrm{n}])-\mathrm{F}_{1}-\{\phi\}$
$(\mathrm{P}([\mathrm{n}])=\{\mathrm{A} \mid \mathrm{A} \subseteq[\mathrm{n}]\}$ (power set of $[\mathrm{n}]), \mathrm{F}_{1} \cap \mathrm{~F}_{1}^{\mathrm{c}}=\phi,\left|\mathrm{F}_{1}\right|=2^{n-1},\left|\mathrm{~F}_{1}^{\mathrm{c}}\right|=2^{n-1}-1$)
Ex) for $[5]=\{1,2,3,4,5\}$,

$$
\begin{gathered}
\mathrm{F}_{1}=\{\{1,2,3,4,5\}, \\
\{1,3,4,5\},\{1,2,4,5\},\{1,2,3,5\},\{1,2,3,4\}, \\
\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{1,4,5\}, \\
\{1,2\},\{1,3\},\{1,4\},\{1,5\},
\end{gathered}
$$

\{1\} \}

$$
F_{1}^{c}=\{\{2,3,4,5\},
$$

$\{3,4,5\},\{2,4,5\},\{2,3,5\},\{2,3,4\}$,
$\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\}$,

$$
\{2\},\{3\},\{4\},\{5\}\}
$$

Since F is a family of nonempty subsets of $[n], F$ is union of f_{1} and f_{1}^{c} s.t f_{1} and f_{1}^{c} are subset of F_{1} and F_{1}^{c} respectively, i.e., $F=f_{1} \cup f_{1}^{c}$ s.t $f_{1} \subseteq F_{1}$ and $f_{1}^{c} \subseteq F_{1}^{c}$.

Since $([n]-s) \in F_{1}^{c}$ and $([n]-s) \cup s=[n]$ for $\forall s \in f_{1}$, only one element of set $O(=\{[n]-s \mid([n]-s) \in$ F_{1}^{c} for $\left.\forall \mathrm{s} \in \mathrm{f}_{1}\right\}$) can be element of $\mathrm{f}_{1}^{\mathrm{c}}$. If two elements of O are element of $\mathrm{f}_{1}^{\mathrm{c}}$, there are same union $[\mathrm{n}](=$ $\left.\left([\mathrm{n}]-s_{1}\right) \cup s_{1}=\left([\mathrm{n}]-s_{2}\right) \cup s_{2}\right)$ for $s_{1}, s_{2} \in O$. So, $\mathrm{f}_{1}^{\mathrm{c}}$ consists of one element of O and subset of $\mathrm{F}_{1}^{\mathrm{c}}-O$.

Therefore,

$$
\mathrm{F}=\mathrm{f}_{1} \cup \mathrm{f}_{1}^{\mathrm{c}} \subseteq \mathrm{f}_{1} \cup\left((\text { one element of } 0) \cup\left(\mathrm{F}_{1}^{\mathrm{c}}-O\right)\right) \rightarrow|F| \leq\left|\mathrm{f}_{1}\right|+1+\left(2^{n-1}-1\right)-\left|\mathrm{f}_{1}\right|=2^{n-1}
$$

$\left(\left|\mathrm{f}_{1}\right| \leq 2^{n-1}-1\right)$
When $\left|f_{1}\right|=2^{n-1}$, i.e., $f_{1}=F_{1}, F \subseteq f_{1} \cup$ (one element of $\left.O^{\prime}\right)=F_{1} \cup$ (one element of F_{1}^{c}). and by same reason above, only none element of O^{\prime} can be possible.
$\left(\mathrm{O}^{\prime}=\left\{[\mathrm{n}]-\mathrm{s} \mid([\mathrm{n}]-\mathrm{s}) \in \mathrm{F}_{1}^{\mathrm{c}}\right.\right.$ for $\left.\left.\forall \mathrm{s} \in\left(\mathrm{F}_{1}-\{[n]\}\right)\right\}=\mathrm{F}_{1}^{\mathrm{c}}\right)$
we can make maximum possible size of F by adding one element of 0^{\prime} to F_{1}
(i.e., $F=\mathrm{F}_{1} \cup\left(\right.$ one element of $\left.\mathrm{F}_{1}^{c}\right)$)

It can be proved easily that no two disjoint sub-sets of F have the same union. Two disjoint sub-sets of F can be possible only $s \in F_{1}$ and one element of F_{1}^{c} respectively. So all union of $s \in F_{1}$ and one element of F_{1}^{c} are different each other. Conclusively,

$$
\therefore \max (F)=2^{n-1}+1
$$

