POW 2021-21 Different unions

전해구(기계공학과 졸업생)

November 12, 2021

Problem

Let F be a family of nonempty subsets of $[n] = \{1,...,n\}$ such that no two disjoint sub-sets of F have the same union. Determine the maximum possible size of F.

Sol

Let F_1 be a family of nonempty subsets of [n] s.t $\{1\} \subseteq s$ for $\forall s \in F_1$ and $F_1^c = P([n]) - F_1 - \{\phi\}$

$$(P([n])=\{A \mid A\subseteq [n]\}\ (power set of [n]), F_1\cap F_1^c=\phi, |F_1|=2^{n-1}, |F_1^c|=2^{n-1}-1)$$

Ex) for $[5]=\{1,2,3,4,5\}$,

$$F_1 = \{ \{1,2,3,4,5\}, \\ \{1,3,4,5\}, \{1,2,4,5\}, \{1,2,3,5\}, \{1,2,3,4\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \\ \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \\ \{1\} \}$$

$$F_1^c = \{ \{2,3,4,5\}, \\ \{3,4,5\}, \{2,4,5\}, \{2,3,5\}, \{2,3,4\}, \\ \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\}, \\ \{2\}, \{3\}, \{4\}, \{5\} \}$$

Since F is a family of nonempty subsets of [n], F is union of f_1 and f_1^c s.t f_1 and f_1^c are subset of F_1 and F_1^c respectively, i.e., $F = f_1 \cup f_1^c$ s.t $f_1 \subseteq F_1$ and $f_1^c \subseteq F_1^c$.

Since $([n] - s) \in F_1^c$ and $([n] - s) \cup s = [n]$ for $\forall s \in f_1$, only one element of set $O(=\{[n] - s \mid ([n] - s) \in F_1^c$ for $\forall s \in f_1\}$) can be element of f_1^c . If two elements of O are element of f_1^c , there are same union $[n](=([n] - s_1) \cup s_1 = ([n] - s_2) \cup s_2)$ for $s_1, s_2 \in O$. So, f_1^c consists of one element of O and subset of O and

Therefore,

$$F = f_1 \cup f_1^c \subseteq f_1 \cup \big(\text{ (one element of 0)} \cup (F_1^c - 0) \big) \rightarrow |F| \leq |f_1| + 1 + (2^{n-1} - 1) - |f_1| = 2^{n-1}$$

$$(|f_1| \leq 2^{n-1} - 1)$$

When $|f_1| = 2^{n-1}$, i.e., $f_1 = F_1$, $F \subseteq f_1 \cup (\text{one element of } O') = F_1 \cup (\text{one element of } F_1^c)$. and by same reason above, only none element of O' can be possible.

$$(0' = \{ [n] - s | ([n] - s) \in F_1^c \text{ for } \forall s \in (F_1 - \{[n]\}) \} = F_1^c)$$

we can make maximum possible size of F by adding one element of $\ 0'$ to $\ F_1$

 $(i.\,e.\,,F=F_1\cup(\text{one element of }F_1^c))$

It can be proved easily that no two disjoint sub-sets of F have the same union. Two disjoint sub-sets of F can be possible only $s \in F_1$ and one element of F_1^c respectively. So all union of $s \in F_1$ and one element of F_1^c are different each other. Conclusively,

$$\therefore \max(\mathbf{F}) = 2^{n-1} + 1$$