POW 2021-20 A circle of perfect squares

전해구(기계공학과 졸업생)

November 11, 2021

Problem

Say a natural number n is a cyclically perfect if one can arrange the numbers from 1 to n on the circle without a repeat so that the sum of any two consecutive numbers is a perfect square. Show that 32 is the smallest cyclically perfect number. Find the second smallest cyclically perfect number.

Sol

Cyclically perfect number n means that there exist at least two different numbers a&b besides i s.t a+i and b+i are perfect square for i=1,2,…,n.

For n = 1,2,3, we can show easily n is not a cyclically perfect.

For n = 4, we need to at least 12&5 for 4 to be a cyclically perfect. For n = 12, we need to at least 17&1 for 8. For n = 17, we need to 19&8. For n = 19, we need to 31&17 for 18. Since use number 18 twice to make 36(=18+18), we use next perfect square 49 to be a cyclically perfect.

Therefore n is greater than 31 to be a cyclically perfect.

Let see whether 31 is a cyclically perfect or not. I list the a&b,i s.t a+i and b+i are perfect square and a,b are unique for i.

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>31</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

By using list,

By using list,

for [19 – 30 – 6] of the list, left side of 19 can be 17 or 6. But since 6 is already used, left side of 19 is 17.

By using list,

So, we have to arrange the following sequence to make n a cyclically perfect.

Left side of 5 can be 11 or 4.

Case1) left side of 5 is 11

By using list,

Side of 14 can be 2,11,22 but 11 is already used. So,

Right side of 2 can be 7,14,23. But 7,14 are already used. By using list and previous fact,

Side of 4 and 13 can be respectively 21,12,5 and 23,12,3. But 5 and 23 is already used. So,

$$[21–6], [4], [12], [13], [3] → [6 – ~ – 21 – 4 – 12 – 13 – 3]$$

Left side of 6 can be 3,10,19. But 3 and 19 are already used. So,

And by using last [1],[15],

Or

But those sequences can’t make n be a cyclic number.

Case2) left side of 5 is 4

Left side of 4 can be 21 or 12.
(1) Left side of 4 is 21

\[4 - 5 \sim \sim - 22 \rightarrow [6 - 30 - 19 - 17 - 8 - 28 - 21 - 4 - 5 \sim \sim - 22] \rightarrow [6 \sim \sim - 22] \]

Side of 15 can be 21,10,1. But 21 is already used. so by using list and previous fact,

\[1 - 15 - 10 - 26 - 23 \]

Side of 12 can be 4,13,24. But 4 is already used. so by using list and previous fact,

\[13 - 12 - 24 - 25 - 11 \]

left side of 6 can be 10 or 3. But 10 is already used so,

\[6 - \sim - 22 \rightarrow [3 - 6 - \sim - 22] \]

Side of 22 can be 14 or 3. But 3 is already used. so, right side of 22 is 14

\[3 - 6 - \sim - 22 \rightarrow [3 - 6 - \sim - 22 - 14] \]

Left Side of 1 can be 24,15,8. But 24,15 is already used. so,

\[1 - 15 - 10 - 26 - 23 \rightarrow [14 - 22 - \sim - 6 - 3 - 1 - 15 - 10 - 26 - 23] \]

Sequences remain like following:

\[[14 - 22 - \sim - 6 - 3 - 1 - 15 - 10 - 26 - 23], [13 - 12 - 24 - 25 - 11], [2] \]

It can arrange like following

\[[2 - 14 - 22 - \sim - 6 - 3 - 1 - 15 - 10 - 26 - 23 - 13 - 12 - 24 - 25 - 11] \]

or

\[[13 - 12 - 24 - 25 - 11 - 14 - 22 - \sim - 6 - 3 - 1 - 15 - 10 - 26 - 23 - 2] \]

But these sequences can’t make n be a cyclically number.

(2) Left side of 4 is 12

\[4 - 5 - 31 - 18 - 7 - 29 - 20 - 16 - 9 - 27 - 22 \rightarrow [12 - 4 - 5 \sim \sim - 22] \]

Left side of 12 can be 24 or 13

1) left side of 12 is 13

\[12 - 4 - 5 \sim \sim - 22 \rightarrow [13 - 12 - 4 - 5 \sim \sim - 22] \]

Left side of 13 can be 23 or 3

First, check when left side of 13 is 23

\[[13 - 12 - 4 - 5 \sim \sim - 22] \rightarrow [23 - 13 - 12 - 4 - 5 \sim \sim - 22] \]

By using list,

\[[23 - 13 - 12 - 4 - 5 \sim \sim - 22] \rightarrow [10 - 26 - 23 - 13 - 12 - 4 - 5 \sim \sim - 22] \]

Side of 21 can be 15 or 4. But 4 is already used. so,
For the [24 – 25 – 11], Side of 24 and 11 can be respectively 12 or 1 and 14 or 5. But 12 and 5 are already used. so,

Sequences remain like following

It can arrange like following;

or

or

Or

But these sequences can’t make n be a cyclically number.

Second, check when left side of 13 is 3

Left side of 23 can be 2 or 13 but 13 is already used. so,

Left side of 2 can be 7,14,23. But 7,23 is already used. so,

Right side of 22 can be 3,14. But only 14 can be possible. So,

Left side of 11 can be 5 or 14 in the list. But 5 and 14 is already used. so, it’s contradiction.

2) left side of 12 is 24

Left side of 11 can be 5,14. But 5 is already used. by using list and previous fact,

Left side of 14 can be 2,22. But only 2 can be possible and side of 2 can be 7,14,23. But 7 is already used.
By using list and previous fact,
\[14 - 11 - 25 - 24 - \sim - 22\] → \[10 - 26 - 23 - 2 - 14 - 11 - 25 - 24 - \sim - 22\] \hspace{1cm} \ldots \hspace{1cm} (a)

Side of 13 can be 23,12,3. But 12 is already used. and by using list,
\[23 - 13 - 3\] → \[10 - 26 - 23 - 13 - 3\]

But this sequence is contradicted to sequence (a).

Conclusively, \(n=31\) can't be a cyclic number.

I can find sequences s.t \(n=32,33\) is a cyclically number by using similar way and correcting list.
Ex) \((a,b)=(4,32,17)\).
But I don’t know how many different sequences that make \(n=32,33\) a cyclically number. The sequences that I find is following;
\[\pi = 3.14 \]