POW 2021-18 Independent sets in a tree 전해구(기계공학과 졸업생)

October 27, 2021

Problem

Let T be a tree (an acyclic connected graph) on the vertex $\operatorname{set}[n]=\{1, \ldots, n\}$.
Let A be the adjacency matrix of T, i.e., the $n \times n$ matrix with $A i j=1$ if i and j are adjacent in T and $\mathrm{Aij}=0$ otherwise. Prove that the number of nonnegative eigenvalues of A equals to the size of the largest independent set of T. Here, an independent set is a set of vertices where no two vertices in the set are adjacent.

Sol

Let T_{i} be a tree on the vertex set $[i]=\{1, \ldots, i\}$, be A_{i} a its adjacency matrix and O_{i} be the largest independent set of T_{i}

Interlacing Theorem(reference)

I can find the theorem in the googling

Lemma 1

Eigenvalue of real Symmetric matrix is real

Proof

Let $\lambda \& v$ be a respectively eigenvalue and eigenvector s.t $A v=\lambda v$ and $A=A^{T}=A^{*}$

$$
<A v, A v>=(A v)^{*} A v=v^{*} A^{*} A v=v^{*} A^{2} v=v^{*} A(\lambda v)=\lambda^{2} v^{*} v=\lambda^{2}\|v\|^{2}
$$

$\lambda^{2}=\frac{\langle A v, A v\rangle}{\|v\|^{2}}$ is a nonegative number. So λ is a real number.

Lemma 2

$\left|O_{n+1}\right|=\left|O_{n}\right|$ if $y \in O_{n}$ for all possible O_{n}
$\left|O_{n+1}\right|=\left|O_{n}\right|+1$ if $y \in O_{n}$ for some different O_{n}

proof

By adding one vertex and one edge from unlabeled T_{n}, we can make unlabeled T_{n+1}. By removing one vertex and one edge from unlabeled T_{n+1}, we can make unlabeled T_{n}. It means that all different unlabeled T_{n+1} can be derived from unlabled T_{n} and vice versa.

<figure 0>

case(1) $y \in 0_{\mathbf{n}}$ for all possible \mathbf{O}_{n}

By adding vertex x and adding e^{\prime}, we can make T_{n+1}. If $\mathrm{y} \in \mathrm{O}_{\mathrm{n}}$ for all possible different O_{n}, vertex x can't be a element of some O_{n+1}. If $x \in O_{n+1}, y$ isn't a element of O_{n+1} and $O_{n+1}-\{x\}=$ O_{n}. So, it is contradiction that $y \in O_{n}$ for all possible different O_{n}. and because $\left|O_{n+1}\right| \geq\left|O_{n}\right|$ and x isn't a element of $O_{n+1}, O_{n+1} \subseteq O_{n}$. thus $\left|O_{n+1}\right|=\left|O_{n}\right|$

case(2) $y \in 0_{n}$ for some different 0_{n} or y isn't always a element of 0_{n}

If $y \in O_{n}$ for some different O_{n} or y isn't always a element of O_{n}, there exists O_{n}^{\prime} s.t y is not a element of O_{n}^{\prime} and $\left|O_{n}^{\prime}\right|=\left|O_{n}\right|$. so, $\left|O_{n}^{\prime}+\{x\}\right| \leq\left|O_{n+1}\right|$. And O_{n+1} has always vertex x Because if x can't be a element of $\mathrm{O}_{\mathrm{n}+1}, \mathrm{O}_{\mathrm{n}+1} \subseteq \mathrm{O}_{\mathrm{n}}$ and it is contradiction. Thus $\mathrm{O}_{\mathrm{n}+1}$ has always vertex x . Let $\left|\mathrm{O}_{\mathrm{n}+1}\right| \geq .\left|\mathrm{O}_{\mathrm{n}}^{\prime}\right|+2$. Because $\mathrm{O}_{\mathrm{n}+1}$ has always vertex $\mathrm{x}, \exists O_{n}$ s.t $\mathrm{O}_{\mathrm{n}+1}-\{x\} \subseteq O_{n}$. But $\mid \mathrm{O}_{\mathrm{n}+1}-$ $\{x\}\left|\geq .\left|\mathrm{O}_{\mathrm{n}}^{\prime}\right|+1\right.$ so it is contradiction. Thus $| \mathrm{O}_{\mathrm{n}+1}\left|=\left|\mathrm{O}_{\mathrm{n}}^{\prime}\right|+1\right.$

Lemma 3

When $f_{n}(\lambda)=\operatorname{det}\left(A_{n}-\lambda I_{n}\right)$, Show that $f_{n+1}(\lambda)=-\lambda * f_{n}(\lambda)-(-\lambda)^{k-2} * f_{n-k+1}(\lambda)$ with k degree of vertex 2 on the following tree

<figure 1>
(I_{n} is a $\mathrm{n} \times \mathrm{n}$ identity matrix)

Since $\mathrm{n}+1$ is finite, there always exist like following form on the T_{n+1} and can label 1,2 on the form and k is greater than 2 and less than n, i.e., $n \geq k \geq 2$

<figure 2>

$$
\begin{aligned}
& A_{n+1}-\lambda I_{n+1}=\left(\begin{array}{ccccc}
-\lambda & 1 & & 0 & 0 \\
1 & -\lambda & \cdots & a_{2, n} & a_{2, n+1} \\
& \vdots & \ddots & \vdots & \\
0 & a_{n, 2} & \cdots & -\lambda & \\
0 & a_{n+1,2} & & & -\lambda
\end{array}\right) \text { s.t } \lambda+\sum_{i=1}^{n} a_{i, 2}=\mathrm{k}, a_{i, j}=0 \text { for } \mathrm{j}=3, \ldots, \mathrm{n}+1 \\
& \left(A_{n+1}=\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n+1} \\
\vdots & \ddots & \vdots \\
a_{n+1,1} & \cdots & a_{n+1, n+1}
\end{array}\right) \text { s.t } A_{n+1}=A_{n+1}^{T} \text { and } a_{i, i}=0 \text { for } i=1,2, \ldots, n+1\right)
\end{aligned}
$$

$$
f_{n+1}(\lambda)=\operatorname{det}\left(A_{n+1}-\lambda I_{n+1}\right)
$$

$$
=-\lambda M_{1,1}-M_{(1,1),(2,2)}
$$

$$
=-\lambda * \operatorname{det}\left(\begin{array}{rcc}
-\lambda & \ldots & a_{2, n+1} \\
\vdots & \ddots & \vdots \\
a_{n+1,2} & \ldots & -\lambda
\end{array}\right)-\operatorname{det}\left(\begin{array}{cccc}
-\lambda & a_{3,4} & \ldots & a_{3, n+1} \\
a_{4,3} & \cdots & \vdots \\
\vdots & \ddots & \vdots \\
a_{n+1,3} & \ldots & \\
& & & \\
\hline \lambda
\end{array}\right) \text {, }
$$

($M_{i, j}$ is defined to be the determinant of $n \times n$ matrix that results from A by removing the ith row and jth column. and $M_{(1,1),(2,2)}$ is the determinant of $(n-1) \times(n-1)$ matrix that results from A_{n+1} by removing the 1 st row \& 1 st column and 2 nd row \& 2 nd column)

Graph of $\left(\begin{array}{ccccc}0 & a_{3,4} & \ldots & & a_{3, n+1} \\ a_{4,3} & 0 & \cdots & & \vdots \\ & \vdots & \ddots & \\ & & \cdots & 0 & \\ a_{n+1,3} & & & & 0\end{array}\right)$ is like following figure 3.

<figure 3>

And $\operatorname{det}\left(\right.$ its adjacency matrix $\left.-\lambda \mathrm{I}_{\mathrm{n}-1}\right)=\operatorname{det}\left(\begin{array}{cccc}-\lambda & a_{3,4} & & \\ a_{4,3} & \ldots & a_{3, n+1} \\ \vdots & \ddots & \vdots \\ a_{n+1,3} & & & \\ & & & \\ & & \end{array}\right)=\operatorname{det}\left(G_{n-1}\right)$ $\operatorname{det}\left(G_{n-1}\right)=\sum_{j=1}^{n-1}(-1)^{i+j} *\left[G_{n-1}\right]_{i, j} * M_{i, j}$ for any i and if we take label number of vertex with 0

$\left(M_{i, i}^{\prime}\right.$ is the determinant of $(\mathrm{n}-2) \times(\mathrm{n}-2)$ matrix that results from G_{n-1} by removing ith row and ith column s.t i vertex has 0 degree)

By repeating $k-2$ times, $\operatorname{det}\left(G_{n-1}\right)=(-\lambda)^{\mathrm{k}-2} * \mathrm{f}_{\mathrm{n}-\mathrm{k}+1}(\lambda)$ s.t $\mathrm{f}_{\mathrm{n}-\mathrm{k}+1}(\lambda)=\operatorname{det}\left(\mathrm{A}_{\mathrm{n}-\mathrm{k}+1}-\lambda \mathrm{I}_{\mathrm{n}-\mathrm{k}+1}\right)$ \& $\mathrm{A}_{\mathrm{n}-\mathrm{k}+1}=$ adjacency matrix of $T_{\mathrm{n}-\mathrm{k}+1}$

Conclusively, $\mathrm{f}_{\mathrm{n}+1}(\lambda)=-\lambda * \mathrm{f}_{\mathrm{n}}(\lambda)-(-\lambda)^{\mathrm{k}-2} * \mathrm{f}_{\mathrm{n}-\mathrm{k}+1}(\lambda)$

Lemma 4

Eigenvalues of A_{n} with labled isomorphic tree are same.,

Proof

Lemma 4 means that $f_{n}(\lambda)$ of isomorphic labeled trees are same. For example, $f_{n}(\lambda)$ of following isomorphic labled trees are same

$$
f_{3}(\lambda)=-\lambda\left(\lambda^{2}-2\right)
$$

Assume that f_{i} for $i=1,2, \ldots, n$ satisfy lemma 4. By lemma 3, $f_{n+1}(\lambda)=-\lambda * f_{n}(\lambda)-(-\lambda)^{k-2} * f_{n-k+1}(\lambda)$ and $f_{n}(\lambda), f_{n-k+1}(\lambda)$ satisfy lemma 4. If we randomly arrange from 1 to $n+1$ into the unlabeled tree T_{n+1}, they are always isomorphic trees and $T_{n} \& T_{\mathrm{n}-\mathrm{k}+1}$ are always isomorphic trees. So, $\mathrm{f}_{\mathrm{n}}(\lambda)$ and $f_{n-k+1}(\lambda)$ are same for isomorphic trees. Therefore $f_{n+1}(\lambda)$ is always same for isomorphic trees $T_{n+1} . \mathrm{f}_{1}(\lambda)=-\lambda, \mathrm{f}_{2}(\lambda)=\lambda^{2}-1$ are always same for isomorphic trees. By mathematical induction Lemma4 is proved

Lemma 5

$f_{n}(\lambda)$ is expressed like following math form
For $n=2 t+1$ (odd) for $t=0,1,2, \ldots$
$f_{n}(\lambda)=-\lambda\left(\lambda^{2 t}+a_{t-1} \lambda^{2 t-2}+\cdots+a_{2} \lambda^{4}+a_{1} \lambda^{2}+a_{0}\right)$
for $n=2 t$ (even) for $t=1,2,3 \ldots$
$\mathrm{f}_{\mathrm{n}}(\lambda)=\lambda^{2 \mathrm{t}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2}+\cdots+\mathrm{a}_{2} \lambda^{4}+\mathrm{a}_{1} \lambda^{2}+\mathrm{a}_{0}$
(a_{i} for $i=0,1, \ldots, t-1$ are real)

Proof

Assume that f_{i} for $i=1,2, \ldots, n$ satisfy lemma5
By lemma 4, $f_{n+1}(\lambda)=f_{n}(\lambda)=-\lambda * f_{n}(\lambda)-(-\lambda)^{k-2} * f_{n-k+1}(\lambda)$

```
case(1) n=2t+1
```

(1) $k=2 s$ (even)
$\mathrm{f}_{\mathrm{n}+1}(\lambda)=\mathrm{f}_{2 \mathrm{t}+2}(\lambda)=-\lambda * \mathrm{f}_{2 \mathrm{t}+1}(\lambda)-(-\lambda)^{\mathrm{k}-2} * \mathrm{f}_{2 \mathrm{t}-\mathrm{k}+2}(\lambda)$
$=\lambda^{2}\left(\lambda^{2 \mathrm{t}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2}+\cdots+\mathrm{a}_{1} \lambda^{2}+\mathrm{a}_{0}\right)-\lambda^{2 \mathrm{~s}-2}\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}+2}+\mathrm{b}_{\mathrm{t}-\mathrm{s}} \lambda^{2 \mathrm{t}-2 \mathrm{~s}}+\cdots+\mathrm{b}_{1} \lambda^{2}+\mathrm{b}_{0}\right)$
For $s=1,2$ respectively
$f_{2 t+2}(\lambda)=\lambda^{2 t+2}+\left(a_{t-1}-1\right) \lambda^{2 t}+\left(a_{t-2}-b_{t-1}\right) \lambda^{2 t-2}+\cdots+\left(a_{0}-b_{1}\right) \lambda^{2}+b_{0}$ for $s=1$
$\mathrm{f}_{2 \mathrm{t}+2}(\lambda)=\lambda^{2 \mathrm{t}+2}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}}+\left(\mathrm{a}_{\mathrm{t}-2}-\mathrm{b}_{\mathrm{t}-2}\right) \lambda^{2 \mathrm{t}-2}+\cdots+\left(\mathrm{a}_{0}-\mathrm{b}_{0}\right) \lambda^{2} \quad$ for $\mathrm{s}=2$

For $s \geq 3$
$\mathrm{f}_{2 \mathrm{t}+2}(\lambda)=\lambda^{2 \mathrm{t}+2}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}}+\left(\mathrm{a}_{\mathrm{t}-2}-\mathrm{b}_{\mathrm{t}-\mathrm{s}}\right) \lambda^{2 \mathrm{t}-2}+\cdots+\left(\mathrm{a}_{\mathrm{s}-2}-\mathrm{b}_{0}\right) \lambda^{2 \mathrm{~s}-2}+\cdots+\mathrm{a}_{0} \lambda^{2}$
(2) $k=2 s+1$ (odd)

$$
\begin{aligned}
& f_{n+1}(\lambda)=f_{2 t+2}(\lambda)=-\lambda * f_{2 t+1}(\lambda)-(-\lambda)^{k-2} * f_{2 t-k+}(\lambda) \\
& =\lambda^{2}\left(\lambda^{2 t}+a_{t-1} \lambda^{2 t-2}+\cdots+a_{1} \lambda^{2}+a_{0}\right)+\lambda^{2 s-1} *-\lambda\left(\lambda^{2 t-2 s}+b_{t-s-1} \lambda^{2 t-2 s}+\cdots+b_{1} \lambda^{2}+b_{0}\right) \\
& =\lambda^{2 t+2}+\left(a_{t-1}-1\right) \lambda^{2 t}+\left(a_{t-2}-b_{t-s-1}\right) \lambda^{2 t-2}+\cdots+\left(a_{s-1}-b_{0}\right) \lambda^{2 s}+\cdots+a_{0} \lambda^{2} \text { for } s \geq 1
\end{aligned}
$$

So, $\mathrm{f}_{2 \mathrm{t}+2}(\lambda)$ is expressed like $\lambda^{2 \mathrm{t}+2}+\mathrm{c}_{\mathrm{t}} \lambda^{2 \mathrm{t}}+\cdots+\mathrm{c}_{2} \lambda^{4}+\mathrm{c}_{1} \lambda^{2}+\mathrm{c}_{0}$ for $n \geq k \geq 2$

case(2) $\mathrm{n}=2 \mathrm{t}$

(1) $k=2 s$ (even)
$\mathrm{f}_{\mathrm{n}+1}(\lambda)=\mathrm{f}_{2 \mathrm{t}+1}(\lambda)=-\lambda * \mathrm{f}_{2 \mathrm{t}}(\lambda)-(-\lambda)^{\mathrm{k}-2} * \mathrm{f}_{2 \mathrm{t}-\mathrm{k}+1}(\lambda)$
$=-\lambda\left(\lambda^{2 t}+a_{t-1} \lambda^{2 t-2}+\cdots+a_{1} \lambda^{2}+a_{0}\right)-\lambda^{2 s-2} *-\lambda\left(\lambda^{2 t-2}+b_{t-s-1} \lambda^{2 t-2 s-2}+\cdots+b_{1} \lambda^{2}+b_{0}\right)$
$=-\lambda\left(\lambda^{2 \mathrm{t}}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2}+\left(\mathrm{a}_{\mathrm{t}-2}-\mathrm{b}_{\mathrm{t}-\mathrm{s}-1}\right) \lambda^{2 \mathrm{t}-4}+\cdots+\left(\mathrm{a}_{\mathrm{s}-1}-\mathrm{b}_{0}\right) \lambda^{2 \mathrm{~s}-2}+\cdots+\mathrm{a}_{0}\right)$ for $s \geq 1$
(2) $k=2 s+1$ (odd)

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{n}+1}(\lambda)=\mathrm{f}_{2 \mathrm{t}+1}(\lambda)=-\lambda * \mathrm{f}_{2 \mathrm{t}}(\lambda)-(-\lambda)^{\mathrm{k}-2} * \mathrm{f}_{2 \mathrm{t}-\mathrm{k}+}(\lambda) \\
& =-\lambda\left(\lambda^{2 \mathrm{t}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2}+\cdots+\mathrm{a}_{1} \lambda^{2}+\mathrm{a}_{0}\right)+\lambda^{2 \mathrm{~s}-1} *\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}}+\mathrm{b}_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2}+\cdots+\mathrm{b}_{1} \lambda^{2}+\mathrm{b}_{0}\right) \\
& =-\lambda\left(\lambda^{2 \mathrm{t}}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2}+\left(\mathrm{a}_{\mathrm{t}-2}-\mathrm{b}_{\mathrm{t}-\mathrm{s}-1}\right) \lambda^{2 \mathrm{t}-4}+\cdots+\left(\mathrm{a}_{\mathrm{s}-1}-\mathrm{b}_{0}\right) \lambda^{2 \mathrm{~s}-2}+\cdots+\mathrm{a}_{0}\right) \text { for } s \geq 1
\end{aligned}
$$

So, $\mathrm{f}_{2 \mathrm{t}+1}(\lambda)$ is expressed like $-\lambda\left(\lambda^{2 \mathrm{t}}+\mathrm{c}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2}+\cdots+\mathrm{c}_{2} \lambda^{4}+\mathrm{c}_{1} \lambda^{2}+\mathrm{c}_{0}\right)$ for $n \geq k \geq 2$

Conclusively, when f_{i} for $i=1,2, \ldots, n$ satisfy lemma5, f_{n+1} satisfy lemma5 and
for $n=1$,
$A_{1}=(0) \rightarrow f_{1}(\lambda)=\operatorname{det}\left(A_{1}-\lambda I_{1}\right)=-\lambda$
For $n=2$,
$A_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \rightarrow f_{2}(\lambda)=\operatorname{det}\left(A_{2}-\lambda I_{2}\right)=\operatorname{det}\left(\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right)=\lambda^{2}-1$
By mathematical induction, lemma 5 is proved.

I will derive the number of nonnegative eigenvalues of A_{n+1} equals to the size of O_{n+1} by mathematical induction. Assume that the number of nonnegative eigenvalues of A_{i} for $\mathrm{i}=1,2, \ldots, \mathrm{n}$ equals to the size of O_{n}. We can make the labeled T_{n+1} by adding vertex ($\mathrm{n}+1$) and edge $(\mathrm{n}+1, \mathrm{p}$) to T_{n} and By lemma 4, change the vertex $\mathrm{n}+1, \mathrm{p}$ respectively to the vertex 1,2 . It means that we can make labeled $T_{\mathrm{n}+1}$ of <figure $1>$ by adding vertex 1 and edge $(1,2)$ to T_{n}. By lemma 3, $\mathrm{f}_{\mathrm{n}+1}(\lambda)=-\lambda * \mathrm{f}_{\mathrm{n}}(\lambda)-(-\lambda)^{\mathrm{k}-2} * \mathrm{f}_{\mathrm{n}-\mathrm{k}+1}(\lambda)$ with figure 1

<figure 1>
For $\mathrm{k} \geq 3$, vertex 2 is a element of some different O_{n} or is not always a element of O_{n}. Let
vertex $2 \in O_{n}$ for all possible O_{n} but there exists $O_{n}^{\prime}=O_{n}-\{2\}+\sum\{v\}$ s.t v is adjacent to $2(v \neq$ vertex 1) and $\left|O_{n}^{\prime}\right| \geq\left|O_{n}\right|$. It is contradiction. Thus vertex 2 is case(2) of Lemma 2.

Therefore,

$$
\left|\mathrm{O}_{\mathrm{n}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|+1 \&\left|\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|-(k-2) \text { for } k \geq 3 \quad \text {... } \quad \text { (a) \&(b) }
$$

Proof of $(a) \&(b)$
because vertex 2 is case(2) of lemma 2, (a) is proved. when vertex x is case(1) of Lemma 2 with $\mathrm{T}_{\mathrm{n}-\mathrm{k}+1}, ~ \mathrm{O}_{\mathrm{n}-\mathrm{k}+1}+\sum\{v\}=\mathrm{O}_{\mathrm{n}}$ s.t v is adjacent to $2(\mathrm{v} \neq$ vertex 1$)$ because $\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}+\sum\{v\}$ is the biggest size of possible independent set. when vertex x is case(2) of Lemma 2 with $\mathrm{T}_{\mathrm{n}-\mathrm{k}+1}$, also $\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}+\sum\{v\}=\mathrm{O}_{\mathrm{n}}$ by same above reason. So, whether vertex x is case(1) or case(2) of Lemma 2, $\left|\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|-\left|\sum\{\mathrm{v}\}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|-(k-2)$. (b) is proved

For $k=2$, vertex 2 can be case(1) or case(2) of Lemma 2.
(1) x is case(1) of lemma $2\left(\left|O_{n}\right|=\left|O_{n-k+1}\right|=\left|O_{n-1}\right|\right)$

Obviously, vertex 2 is case(2) of lemma 2. So, $\left|O_{n+1}\right|=\left|O_{n}\right|+1$
(2) x is case(2) of lemma $2\left(\left|O_{n}\right|=\left|O_{n-k+1}\right|+1=\left|O_{n-1}\right|+1\right)$

Because x is case(2) of lemma2, vertex 2 is always a element of O_{n}. So, vertex 2 is case(1) of lemma 2 and $\left|O_{n+1}\right|=\left|O_{n}\right|$

Conclusively, we can know that whether x is case(1) or not case(2) of lemma 2,

$$
\left|O_{n+1}\right|=\left|O_{n-1}\right|+1
$$

case(1) $n=2 t$

By lemma 1, $f_{2 t}(\lambda)$ has $2 t$ real eigenvalues and By lemma 5, $f_{2 t}(\lambda)=f_{2 t}(-\lambda)$. So we can order its eigenvalues like this

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{t} \geq 0 \geq-\lambda_{t} \geq \cdots \geq-\lambda_{2} \geq-\lambda_{1} \\
\left(\mathrm{f}_{2 \mathrm{t}}(\lambda)=\lambda^{2 \mathrm{t}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2}+\cdots+\mathrm{a}_{1} \lambda^{2}+\mathrm{a}_{0}\right)
\end{gathered}
$$

Let $\lambda_{t-q+1}=\ldots=\lambda_{t-1}=\lambda_{t}=0$. (\# of zero eigenvalues $\left.=2 \mathrm{q}\right)$.

$$
\text { Then, } \mathrm{f}_{2 \mathrm{t}}(\lambda)=\lambda^{2 \mathrm{t}}+\cdots+\mathrm{a}_{0}=\lambda^{2 \mathrm{q}}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right) \text { s.ta } \mathrm{a}_{\mathrm{q}} \neq 0
$$

(1) $k=2 s$ for $s=2,3, \ldots$

By using similar way, eigenvalues of $\mathrm{f}_{2 \mathrm{t}-2} \quad(\lambda)$ can be ordered like this

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{t-s} \geq \lambda_{0}=0 \geq-\lambda_{t-s} \geq \cdots \geq-\lambda_{2} \geq-\lambda_{1} \\
\left(t-s \geq 1, \mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}} \quad(\lambda)=-\lambda\left(\lambda^{2 \mathrm{t}-2}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2}+\cdots+\mathrm{b}_{0}\right)\right)
\end{gathered}
$$

Let $\lambda_{t-s-q^{\prime}+1}=\ldots=\lambda_{t-s-1}=\lambda_{t-s}=0$. (\# of zero eigenvalues $=2 q^{\prime}+1$)

$$
\text { Then, } \mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}} \quad(\lambda)=-\lambda^{2 \mathrm{q}^{\prime}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2-2 \mathrm{q}^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right) \text { s.t } \mathrm{b}_{\mathrm{q}^{\prime}} \neq 0
$$

By assumption, $\left|O_{2 t}\right|=\#$ of nonnegative eigenvalues $=\mathrm{t}+\mathrm{q},\left|O_{2 t-2 s+1}\right|=t-s+q^{\prime}+1$ $\left|\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|-(k-2) \rightarrow\left|\mathrm{O}_{2 \mathrm{t}-2 \mathrm{~s}}\right|=\left|\mathrm{O}_{2 \mathrm{t}}\right|-(2 s-2) \rightarrow t-s+q^{\prime}+1=\mathrm{t}+\mathrm{q}-(2 \mathrm{~s}-2)$ $\rightarrow q^{\prime}=q-s+1$

Thus, $f_{2 t+1}(\lambda)=-\lambda * f_{2 t}(\lambda)-(-\lambda)^{2 s-2} * f_{2 t-2 s+1}(\lambda)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)+\lambda^{2 \mathrm{~s}-2} \lambda^{2 \mathrm{q}^{\prime}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2-2 \mathrm{q}^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)+\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2-}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-4-2 \mathrm{q}}+\cdots+\mathrm{b}_{\mathrm{q}-\mathrm{s}+1}\right)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-2}-b_{\mathrm{t}-\mathrm{s}-1}\right) \lambda^{2 \mathrm{t}-4-}+\cdots+\left(\mathrm{a}_{\mathrm{q}}-\mathrm{b}_{\mathrm{q}-\mathrm{s}+1}\right)\right)$
(2) $k=2 s+1$ for $s=1,2, \ldots$
eigenvalues of $f_{2 t-2 s}(\lambda)$ can be ordered like this,

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{t-s} \geq 0 \geq-\lambda_{t-s} \geq \cdots \geq-\lambda_{2} \geq-\lambda_{1} \\
\left(\mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}}(\lambda)=\lambda^{2 \mathrm{t}-2 \mathrm{~s}}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2}+\cdots+\mathrm{b}_{0}\right)
\end{gathered}
$$

Let $\lambda_{t-s-q^{\prime}+1}=\ldots=\lambda_{t-s-1}=\lambda_{t-s}=0$ (\# of zero eigenvalues $=2 \mathrm{q}^{\prime}$)

$$
\text { Then, } \mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}}(\lambda)=\lambda^{2 \mathrm{q}^{\prime}}\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2-2 \mathrm{q}^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right) \text { s.t } \mathrm{b}_{\mathrm{q}^{\prime}} \neq 0
$$

By assumption, $\left|O_{2 t}\right|=\#$ of nonnegative eigenvalues $=\mathrm{t}+\mathrm{q},\left|O_{2 t-2 s}\right|=t-s+q^{\prime}$
$\left|\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|-(k-2) \rightarrow\left|\mathrm{O}_{2 \mathrm{t}-2 \mathrm{~s}}\right|=\left|\mathrm{O}_{2 \mathrm{t}}\right|-(2 s-1) \rightarrow t-s+q^{\prime}=\mathrm{t}+\mathrm{q}-(2 \mathrm{~s}-1)$
$\rightarrow q^{\prime}=q-s+1$

Thus, $f_{2 t+1}(\lambda)=-\lambda * f_{2 t}(\lambda)-(-\lambda)^{2 s-1} * f_{2 t-2}(\lambda)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)+\lambda^{2 \mathrm{~s}-1} \lambda^{2 \mathrm{q}^{\prime}}\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2-2 \mathrm{q}^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-}+\cdots+\mathrm{a}_{\mathrm{q}}\right)+\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-4-}+\cdots+\mathrm{b}_{\mathrm{q}-\mathrm{s}+1}\right)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)+\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2-}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-4-}+\cdots+\mathrm{b}_{\mathrm{q}-\mathrm{s}+1}\right)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-2}-b_{\mathrm{t}-\mathrm{s}-1}\right) \lambda^{2 \mathrm{t}-4-2 \mathrm{q}}+\cdots+\left(\mathrm{a}_{\mathrm{q}}-\mathrm{b}_{\mathrm{q}-\mathrm{s}+1}\right)\right)$
Therefore, for $3 \leq k \leq n, f_{2 t+1}(\lambda)$ has at least $2 q+1$ zero eigenvalues.

And By interlacing theorem,

$$
\begin{aligned}
& \lambda_{1}^{\prime} \geq \lambda_{1} \geq \lambda_{2}^{\prime} \geq \cdots \geq \lambda_{t-q+1}^{\prime} \geq \lambda_{t-q+1} \geq \lambda_{t-q+2}^{\prime} \geq \cdots \geq \lambda_{t}^{\prime} \geq \lambda_{t} \geq \lambda_{0}^{\prime}=0 \geq-\lambda_{t}^{\prime} \geq \cdots \geq-\lambda_{1}^{\prime} \\
& \text { (s.t } \mathrm{f}_{2 \mathrm{t}+1}\left(\pm \lambda_{i}^{\prime}\right)=0 \text { for } \mathrm{i}=0,1, \ldots, \mathrm{t} \text { and } \mathrm{f}_{2 \mathrm{t}}\left(\pm \lambda_{i}\right)=0 \text { for } \mathrm{i}=1,2, \ldots \mathrm{t} \& \lambda_{t-q+1}=\cdots=\lambda_{t}=0 \text {) }
\end{aligned}
$$

If $\lambda_{t-q}^{\prime}=0, \lambda_{t-q}^{\prime} \geq \lambda_{t-q} \geq \lambda_{t-q+1}^{\prime} \rightarrow \lambda_{t-q}=0$. Because $\lambda_{t-q}>\lambda_{t-q+1}=0$, It is contradiction. So, $\lambda_{t-q+1}^{\prime}=0 \rightarrow, \mathrm{f}_{2 \mathrm{t}+1}(\lambda)$ has $\mathrm{t}+\mathrm{q}+1$ nonnegative eigenvalues. And By (a), $\left|\mathrm{O}_{2 \mathrm{t}+1}\right|=\left|\mathrm{O}_{2 \mathrm{t}}\right|+1=\mathrm{t}+$ $\mathrm{q}+1$

Conclusively, $\left|\mathrm{O}_{2 \mathrm{t}+1}\right|=$ \# of nonnegative eigenvalues of $\mathrm{A}_{2 \mathrm{t}+1}$ for $3 \leq \mathrm{k} \leq \mathrm{n}=2 \mathrm{t}$
(3) $k=2$
(1) x is case(1) of lemma $2\left(\left|O_{n}\right|=\left|O_{n-k+1}\right|=\left|O_{n-1}\right|\right)$

Because vertex 2 is case(2) of lemma 2, it is proved by above $k=2 s$ for $s=1$
(2) x is case(2) of lemma $2\left(\left|O_{n}\right|=\left|O_{n-k+1}\right|+1=\left|O_{n-1}\right|+1\right)$

By using similar way,

$$
f_{n+1}(\lambda)=-\lambda * f_{n}(\lambda)-(-\lambda)^{k-2} * f_{n-k+1}(\lambda) \quad \rightarrow \quad f_{2 t+1}=-\lambda * f_{2 t}(\lambda)-f_{2 t-1}(\lambda)
$$

$\mathrm{f}_{2 \mathrm{t}}(\lambda)=\lambda^{2 \mathrm{q}}\left(\lambda^{2 \mathrm{t}-}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)$ s.t $\mathrm{a}_{\mathrm{q}} \neq 0 \quad(\#$ of zero eigenvalues $=2 \mathrm{q})$
$\mathrm{f}_{2 \mathrm{t}-1}(\lambda)=-\lambda^{2 \mathrm{q}^{\prime}+1}\left(\lambda^{2 \mathrm{t}-2-2{ }^{\prime}}+b_{\mathrm{t}-2} \lambda^{2 \mathrm{tt-4-2}{ }^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right)$ s.t $\mathrm{b}_{\mathrm{q}^{\prime}} \neq 0$ (\# of zero eigenvalues $=2 \mathrm{q}^{\prime}+1$)

By assumption, $\left|O_{2 t}\right|=\mathrm{t}+\mathrm{q},\left|O_{2 t-1}\right|=t+q^{\prime}$ and x is case(2) of lemma 2
$\left|\mathrm{O}_{\mathrm{n}}\right|=\left|\mathrm{O}_{\mathrm{n}-1}\right|+1 \rightarrow\left|\mathrm{O}_{2 \mathrm{t}}\right|=\left|\mathrm{O}_{2 \mathrm{t}-1}\right|+1 \rightarrow t+q=t+q^{\prime}+1$
$\rightarrow q^{\prime}=q-1$

Thus, $\mathrm{f}_{2 \mathrm{t}+1}=-\lambda * \mathrm{f}_{2 t}(\lambda)-\mathrm{f}_{2 \mathrm{t}-1}(\lambda)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-}+\cdots+\mathrm{a}_{\mathrm{q}}\right)+\lambda^{2 \mathrm{q}^{\prime}+1}\left(\lambda^{2 \mathrm{t}-2-2{ }^{\prime}}+b_{\mathrm{t}-2} \lambda^{2 \mathrm{t}-4-2{ }^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right)$
$=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)+\lambda^{2 \mathrm{q}-1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+b_{\mathrm{t}-2} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{b}_{q-1}\right)$
$=-\lambda^{2 \mathrm{q}-1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-2}-b_{\mathrm{t}-2}\right) \lambda^{2 \mathrm{t}-2-} \ldots+\left(\mathrm{a}_{\mathrm{q}}-\mathrm{b}_{q}\right) \lambda^{2}-\mathrm{b}_{q-1}\right)$
therefore $\mathrm{b}_{q-1} \neq 0$ and $\mathrm{f}_{2 \mathrm{t}+1}(\lambda)$ has $2 \mathrm{q}-1$ zero eigenvalues for $\mathrm{k}=2$.
Thus, $f_{2 t+1}(\lambda)$ has $t+q$ nonnegative eigenvalues and since vertex 2 is case (1) of lemma 2,
$\left|\mathrm{O}_{\mathrm{n}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right| \rightarrow\left|\mathrm{O}_{2 \mathrm{t}+1}\right|=\left|\mathrm{O}_{2 \mathrm{t}}\right|=t+q$

Conclusively, $\left|\mathrm{O}_{2 t+1}\right|=\#$ of nonnegative eigenvalues of $\mathrm{A}_{2 \mathrm{t}+1}$ for $2 \leq \mathrm{k} \leq \mathrm{n}=2 \mathrm{t}$

I will show case(2) $n=2 t+1$ by using same method. It's just simple calculation for proof

case(2) $n=2 t+1$

$f_{2 t+1}(\lambda)$ can be ordered like following,

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{t} \geq \lambda_{0}=0 \geq-\lambda_{t} \geq \cdots \geq-\lambda_{2} \geq-\lambda_{1} \\
\left(\mathrm{f}_{2 \mathrm{t}+1}(\lambda)=-\lambda\left(\lambda^{2 \mathrm{t}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2}+\cdots+\mathrm{a}_{1} \lambda^{2}+\mathrm{a}_{0}\right)\right)
\end{gathered}
$$

Let $\lambda_{t-q+1}=\ldots=\lambda_{t-1}=\lambda_{t}=0$. (\# of zero eigenvalues $=2 q+1$).

$$
\text { Then, } \mathrm{f}_{2 \mathrm{tt} 1}(\lambda)=-\lambda^{2 \mathrm{q}+1}\left(\lambda^{2 t-2}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 t-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right) \text { s.t } \mathrm{a}_{\mathrm{q}} \neq 0
$$

(1) $k=2 s$ for $s=2,3, \ldots$
eigenvalues of $\mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}+2}(\lambda)$ can be ordered like this

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{t-s+1} \geq 0 \geq-\lambda_{t-s+1} \geq \cdots \geq-\lambda_{2} \geq-\lambda_{1} \\
\left(\mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}} \quad(\lambda)=\lambda^{2 \mathrm{t}-2 \mathrm{~s}} \quad+b_{\mathrm{t}-\mathrm{s}} \lambda^{2 \mathrm{t}-2 \mathrm{~s}}+\cdots+\mathrm{b}_{0}\right)
\end{gathered}
$$

Let $\lambda_{t-s-q^{\prime}+2}=\ldots=\lambda_{t-s-1}=\lambda_{t-s+1}=0$. (\# of zero eigenvalues $=2 q^{\prime}$)

$$
\text { Then, } \mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}} \quad(\lambda)=\lambda^{2 \mathrm{q}^{\prime}}\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}+2-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-\mathrm{s}} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2 \mathrm{q}^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right) \text { s.t } \mathrm{b}_{\mathrm{q}^{\prime}} \neq 0
$$

By assumption, $\left|O_{2 t+1}\right|=\mathrm{t}+\mathrm{q}+1,\left|O_{2 t-2 s+2}\right|=t-s+1+q^{\prime}$ and $\left|\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|-(k-2)$
$\rightarrow q^{\prime}=q-s+2$
Thus, $f_{2 t+2}(\lambda)=-\lambda * f_{2 t+1}(\lambda)-(-\lambda)^{2 s-2} * f_{2 t-2 s+2}(\lambda)$
$=\lambda^{2 \mathrm{q}+2}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-2}-b_{\mathrm{t}-\mathrm{s}}\right) \lambda^{2 \mathrm{t}-4-}+\cdots+\left(\mathrm{a}_{\mathrm{q}}-\mathrm{b}_{\mathrm{q}-\mathrm{s}+2}\right)\right)$
(2) $k=2 s+1$ for $s=1,2, \ldots$
eigenvalues of $f_{2 t-2 s+1}(\lambda)$ can be ordered like this, (\# of zero eigenvalues $=2 q^{\prime}+1$)

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{t-s} \geq \lambda_{0}=0 \geq-\lambda_{t-s} \geq \cdots \geq-\lambda_{2} \geq-\lambda_{1} \\
\left(t-s \geq 1, \mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}+1}(\lambda)=-\lambda\left(\lambda^{2 \mathrm{t}-2}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}} \quad+\cdots+\mathrm{b}_{0}\right)\right)
\end{gathered}
$$

Let $\lambda_{t-s-q^{\prime}+1}=\ldots=\lambda_{t-s-1}=\lambda_{t-s}=0$

$$
\text { Then, } \mathrm{f}_{2 \mathrm{t}-2 \mathrm{~s}+1}(\lambda)=-\lambda^{2 \mathrm{q}^{\prime}+1}\left(\lambda^{2 \mathrm{t}-2 \mathrm{~s}-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-\mathrm{s}-1} \lambda^{2 \mathrm{t}-2 \mathrm{~s}-2-2 \mathrm{q}^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right) \text { s.t } \mathrm{b}_{\mathrm{q}^{\prime}} \neq 0
$$

By assumption, $\left|O_{2 t+1}\right|=\mathrm{t}+\mathrm{q}+1,\left|O_{2 t-2 s+1}\right|=t-s+1+q^{\prime}$ and $\left|\mathrm{O}_{\mathrm{n}-\mathrm{k}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right|-(k-2)$
$\rightarrow q^{\prime}=q-s+2$
Thus, $f_{2 t+2}(\lambda)=-\lambda * f_{2 t+1}(\lambda)-(-\lambda)^{2 s-1} * f_{2 t-2 s} \quad(\lambda)$
$=\lambda^{2 \mathrm{q}+2}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-2}-b_{\mathrm{t}-\mathrm{s}}\right) \lambda^{2 \mathrm{t}-4-2 \mathrm{q}}+\cdots+\left(\mathrm{a}_{\mathrm{q}}-\mathrm{b}_{\mathrm{q}-\mathrm{s}+2}\right)\right)$
Therefore, for $3 \leq \mathrm{k} \leq \mathrm{n}, \mathrm{f}_{2 \mathrm{t}+2}(\lambda)$ has at least $2 \mathrm{q}+2$ zero eigenvalues.

And By interlacing theorem,

$$
\lambda_{1}^{\prime} \geq \lambda_{1} \geq \lambda_{2}^{\prime} \geq \cdots \geq \lambda_{t-q+1}^{\prime} \geq \lambda_{t-q+1} \geq \lambda_{t-q+2}^{\prime} \geq \cdots \geq \lambda_{t} \geq \lambda_{t+1}^{\prime} \geq \lambda_{0}=0 \geq-\lambda_{t+1}^{\prime} \geq \cdots \geq-\lambda_{1}^{\prime}
$$

(s.t $\mathrm{f}_{2 \mathrm{t}+2}\left(\pm \lambda_{i}^{\prime}\right)=0$ for $\mathrm{i}=1, \ldots, \mathrm{t}, \mathrm{t}+1$ and $\mathrm{f}_{2 \mathrm{t}+1}\left(\pm \lambda_{i}\right)=0$ for $\mathrm{i}=0,1,2, \ldots \mathrm{t} \& \lambda_{t-q+1}=\cdots=\lambda_{t}=0$)

If $\lambda_{t-q}^{\prime}=0, \lambda_{t-q}^{\prime} \geq \lambda_{t-q} \geq \lambda_{t-q+1}^{\prime} \rightarrow \lambda_{t-q}=0$. Because $\lambda_{t-q}>\lambda_{t-q+1}=0$, It is contradiction. So, $\lambda_{t-q+1}^{\prime}=0 \rightarrow \mathrm{f}_{2 t+2}(\lambda)$ has $\mathrm{t}+\mathrm{q}+2$ nonnegative eigenvalues. And By (a), $\left|\mathrm{O}_{2 \mathrm{t}+2}\right|=\left|\mathrm{O}_{2 \mathrm{t}+1}\right|+1=\mathrm{t}+$ $\mathrm{q}+2$

Conclusively, $\left|\mathrm{O}_{2 \mathrm{t}+2}\right|=\#$ of nonnegative eigenvalues of $\mathrm{A}_{2 \mathrm{t}+1}$ for $3 \leq \mathrm{k} \leq \mathrm{n}$
(3) $k=2$
(1) x is case(1) of lemma $2\left(\left|O_{n}\right|=\left|O_{n-k+1}\right|=\left|O_{n-1}\right|\right)$

Because vertex 2 is case(2) of lemma 2, it is proved by above $k=2 s$ for $s=1$
(2) x is case(2) of lemma $2\left(\left|O_{n}\right|=\left|O_{n-k+1}\right|+1=\left|O_{n-1}\right|+1\right)$

By using similar way,

$$
f_{n+1}(\lambda)=-\lambda * f_{n}(\lambda)-(-\lambda)^{k-2} * f_{n-k+1}(\lambda) \quad \rightarrow \quad f_{2 t+2}=-\lambda * f_{2 t+1}(\lambda)-f_{2 t}(\lambda)
$$

$f_{2 t+1}(\lambda)=-\lambda^{2 q+1}\left(\lambda^{2 t-2 q}+a_{t-1} \lambda^{2 t-2-} \quad+\cdots+a_{q}\right)$ s.ta $a_{q} \neq 0(\#$ of zero eigenvalues $=2 q+1)$
$\mathrm{f}_{2 \mathrm{t}}(\lambda)=-\lambda^{2 \mathrm{q}^{\prime}}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right)$ s.t $\mathrm{b}_{\mathrm{q}^{\prime}} \neq 0\left(\#\right.$ of zero eigenvalues $\left.=2 \mathrm{q}^{\prime}\right)$

By assumption, $\left|O_{2 t+1}\right|=\mathrm{t}+\mathrm{q}+1,\left|O_{2 t}\right|=t+q^{\prime}$ and x is case(2) of lemma 2
$\left|\mathrm{O}_{\mathrm{n}}\right|=\left|\mathrm{O}_{\mathrm{n}-1}\right|+1 \rightarrow\left|\mathrm{O}_{2 t+1}\right|=\left|\mathrm{O}_{2 \mathrm{t}}\right|+1 \rightarrow t+q+1=t+q^{\prime}+1$
$\rightarrow q^{\prime}=\mathrm{q}$

Thus, $\mathrm{f}_{2 \mathrm{t}+2}=-\lambda * \mathrm{f}_{2 t+1}(\lambda)-\mathrm{f}_{2 \mathrm{t}}(\lambda)$
$=\lambda^{2 \mathrm{q}+2}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)-\lambda^{2 \mathrm{q}^{\prime}}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}^{\prime}}+b_{\mathrm{t}-1} \lambda^{2 \mathrm{tt}-2-22^{\prime}}+\cdots+\mathrm{b}_{\mathrm{q}^{\prime}}\right)$
$=\lambda^{2 \mathrm{q}+2}\left(\lambda^{2 \mathrm{t}-2 \mathrm{q}}+\mathrm{a}_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{a}_{\mathrm{q}}\right)-\lambda^{2 \mathrm{q}}\left(\lambda^{2 \mathrm{t}-2}+b_{\mathrm{t}-1} \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\mathrm{b}_{q}\right)$
$=\lambda^{2 \mathrm{q}}\left(\lambda^{2 \mathrm{t}+2-2 \mathrm{q}}+\left(\mathrm{a}_{\mathrm{t}-1}-1\right) \lambda^{2 \mathrm{t}-2}+\left(\mathrm{a}_{\mathrm{t}-2}-b_{\mathrm{t}-1}\right) \lambda^{2 \mathrm{t}-2-2 \mathrm{q}}+\cdots+\left(\mathrm{a}_{\mathrm{q}}-\mathrm{b}_{q+1}\right) \lambda^{2}-\mathrm{b}_{q}\right)$
therefore $\mathrm{b}_{q} \neq 0$ and $\mathrm{f}_{2 \mathrm{t}+1}(\lambda)$ has 2 q zero eigenvalues for $\mathrm{k}=2$.
Thus, $f_{2 t+1}(\lambda)$ has $t+1+q$ nonnegative eigenvalues and since vertex 2 is case(1) of lemma 2,
$\left|\mathrm{O}_{\mathrm{n}+1}\right|=\left|\mathrm{O}_{\mathrm{n}}\right| \rightarrow\left|\mathrm{O}_{2 \mathrm{t}+2}\right|=\left|\mathrm{O}_{2 \mathrm{t}+1}\right|=t+q+1$

Conclusively, $\left|\mathrm{O}_{2 t+2}\right|=$ \# of nonnegative eigenvalues of $\mathrm{A}_{2 \mathrm{t}+2}$ for $2 \leq \mathrm{k} \leq \mathrm{n}=2 \mathrm{t}+1$

For $\mathrm{n}=1,2,3$, its $\mathrm{f}_{\mathrm{n}}(\lambda)=-\lambda, \lambda^{2}-1,-\lambda\left(\lambda^{2}-2\right)$ and $\left|O_{n}\right|=1,1,2$ respectively. It can show easily. So by mathematical induction, the number of nonnegative eigenvalues of A_{n} equals to the size of the largest independent set of T_{n}

