POW 2021-18 Independent sets in a tree

전해구(기계공학과 졸업생)

October 27, 2021

Problem

Let T be a tree (an acyclic connected graph) on the vertex $set[n] = \{1,...,n\}$.

Let A be the adjacency matrix of T, i.e., the n x n matrix with Aij = 1 if i and j are adjacent in T and Aij = 0 otherwise. Prove that the number of nonnegative eigenvalues of A equals to the size of the largest independent set of T. Here, an independent set is a set of vertices where no two vertices in the set are adjacent.

Sol

Let T_i be a tree on the vertex set [i] = {1,...,i}, be A_i a its adjacency matrix and O_i be the largest independent set of T_i

Interlacing Theorem(reference)

I can find the theorem in the googling

Lemma 1

Eigenvalue of real Symmetric matrix is real

Proof

Let $\lambda \& v$ be a respectively eigenvalue and eigenvector s.t $Av = \lambda v$ and $A = A^T = A^*$

$$< Av, Av > = (Av)^*Av = v^*A^*Av = v^*A^2v = v^*A(\lambda v) = \lambda^2 v^*v = \lambda^2 ||v||^2$$

 $\lambda^2 = \frac{\langle Av, Av \rangle}{\|v\|^2}$ is a nonegative number. So λ is a real number.

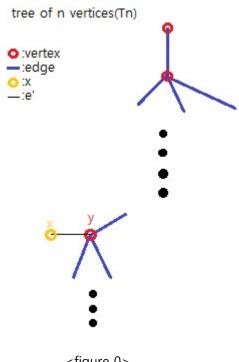
Lemma 2

 $|0_{n+1}| = |0_n|$ if $y \in 0_n$ for all possible 0_n

 $|0_{n+1}| = |0_n| + 1$ if $y \in 0_n$ for some different 0_n

proof

By adding one vertex and one edge from unlabeled T_n , we can make unlabeled T_{n+1} . By removing one vertex and one edge from unlabeled T_{n+1} , we can make unlabeled T_n . It means that all different unlabeled T_{n+1} can be derived from unlabled T_n and vice versa.



<figure 0>

case(1) $y \in O_n$ for all possible O_n

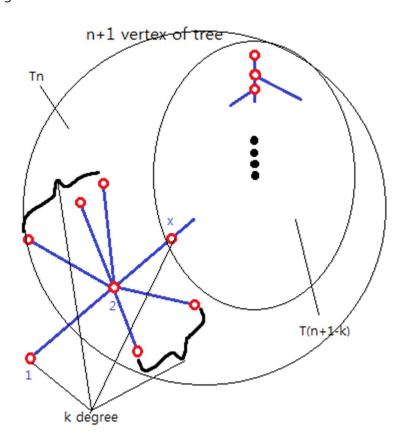
By adding vertex x and adding e', we can make T_{n+1} . If $y \in O_n$ for all possible different O_n , vertex x can't be a element of some 0_{n+1} . If $x \in 0_{n+1}$, y isn't a element of 0_{n+1} and $0_{n+1} - \{x\} = 0$ 0_n . So, it is contradiction that $y \in 0_n$ for all possible different 0_n . and because $|0_{n+1}| \ge |0_n|$ and x isn't a element of 0_{n+1} , $0_{n+1} \subseteq 0_n$. thus $|0_{n+1}| = |0_n|$

case(2) $\ y \in 0_n$ for some different 0_n or y isn't always a element of 0_n

If $y \in O_n$ for some different O_n or y isn't always a element of O_n , there exists O_n' s.t y is not a element of O_n' and $|O_n'| = |O_n|$. so, $|O_n' + \{x\}| \le |O_{n+1}|$. And O_{n+1} has always vertex x Because if x can't be a element of O_{n+1} , $O_{n+1} \subseteq O_n$ and it is contradiction. Thus O_{n+1} has always vertex x. Let $|O_{n+1}| \ge |O_n'| + 2$. Because O_{n+1} has always vertex x, $\exists O_n \ s.t \ O_{n+1} - \{x\} \subseteq O_n$. But $|O_{n+1} - \{x\}| \ge |O_n'| + 1$ so it is contradiction. Thus $|O_{n+1}| = |O_n'| + 1$

Lemma 3

When $f_n(\lambda) = \det(A_n - \lambda I_n)$, Show that $f_{n+1}(\lambda) = -\lambda * f_n(\lambda) - (-\lambda)^{k-2} * f_{n-k+1}(\lambda)$ with k degree of vertex 2 on the following tree



<figure 1>

(I_n is a n x n identity matrix)

Proof

Since n+1 is finite, there always exist like following form on the T_{n+1} and can label 1,2 on the form and k is greater than 2 and less than n, i.e., $n \ge k \ge 2$

<figure 2>

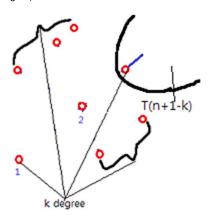
$$A_{n+1} - \lambda I_{n+1} = \begin{pmatrix} -\lambda & 1 & \dots & 0 & 0 \\ 1 & -\lambda & \dots & a_{2,n} & a_{2,n+1} \\ \vdots & \ddots & \vdots & & \\ 0 & a_{n,2} & \dots & -\lambda \\ 0 & a_{n+1,2} & \dots & -\lambda \end{pmatrix} \text{ s.t } \lambda + \sum_{i=1}^n a_{i,2} = k, \ a_{i,j} = 0 \text{ for } j = 3, \dots, n+1$$

$$(A_{n+1} = \begin{pmatrix} a_{1,1} & \dots & a_{1,n+1} \\ \vdots & \ddots & \vdots \\ a_{n+1,1} & \dots & a_{n+1,n+1} \end{pmatrix} \text{ s.t } A_{n+1} = A_{n+1}^T \text{ and } a_{i,i} = 0 \text{ for } i = 1,2, \dots, n+1)$$

$$\begin{split} &f_{n+1}(\lambda) = \det(A_{n+1} - \lambda I_{n+1}) \\ &= -\lambda M_{1,1} - M_{(1,1),(2,2)} \\ &= -\lambda * \det\begin{pmatrix} -\lambda & \dots & a_{2,n+1} \\ \vdots & \ddots & \vdots \\ a_{n+1,2} & \dots & -\lambda \end{pmatrix} - \det\begin{pmatrix} -\lambda & a_{3,4} & \dots & a_{3,n+1} \\ a_{4,3} & \vdots & \ddots & \vdots \\ a_{n+1,2} & \dots & -\lambda \end{pmatrix}, \end{split}$$

 $(M_{i,j} \text{ is defined to be the determinant of } n \times n \text{ matrix that results from A by removing the ith row and jth column.}$ and $M_{(1,1),(2,2)}$ is the determinant of $(n-1) \times (n-1)$ matrix that results from A_{n+1} by removing the 1st row & 1st column and 2nd row & 2nd column)

Graph of
$$\begin{pmatrix} 0 & a_{3,4} & \dots & a_{3,n+1} \\ a_{4,3} & 0 & \cdots & & \vdots \\ \vdots & \ddots & \vdots & & \vdots \\ a_{n+1,3} & & & 0 \end{pmatrix}$$
 is like following figure 3.



<figure 3>

And det(its adjacency matrix
$$-\lambda I_{n-1}$$
) = $\det\begin{pmatrix} -\lambda & a_{3,4} & \dots & a_{3,n+1} \\ a_{4,3} & \ddots & \vdots \\ a_{n+1,3} & \dots & -\lambda \end{pmatrix}$ = $\det(G_{n-1})$

 $\det(G_{n-1}) = \sum_{j=1}^{n-1} (-1)^{i+j} * [G_{n-1}]_{i,j} * M_{i,j} \text{ for any i and if we take label number of vertex with } 0$

$$\text{degree into i, } \det(G_{n-1}) = \det \left(\begin{array}{cccccc} & & 0 & & & \\ & & \vdots & & & \\ 0 & \dots & 0 & -\lambda & 0 & 0 \dots & 0 \\ & & 0 & & & \\ & & 0 & & & \\ & & & 0 & & \\ \end{array} \right) = -\lambda * M'_{i,i}$$

 $(M'_{i,i})$ is the determinant of (n-2) x (n-2) matrix that results from G_{n-1} by removing ith row and ith column s.t i vertex has 0 degree)

By repeating k-2 times, $\det(G_{n-1})=(-\lambda)^{k-2}*f_{n-k+1}(\lambda)$ s.t $f_{n-k+1}(\lambda)=\det(A_{n-k+1}-\lambda I_{n-k+1})$ & $A_{n-k+1}=$ adjacency matrix of T_{n-k+1}

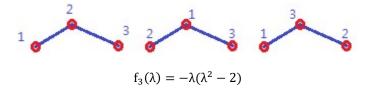
Conclusively,
$$f_{n+1}(\lambda) = -\lambda * f_n(\lambda) - (-\lambda)^{k-2} * f_{n-k+1}(\lambda)$$

Lemma 4

Eigenvalues of A_n with labled isomorphic tree are same.,

Proof

Lemma 4 means that $f_n(\lambda)$ of isomorphic labeled trees are same. For example, $f_n(\lambda)$ of following isomorphic labled trees are same



Assume that f_i for i=1,2,...,n satisfy lemma 4. By lemma 3, $f_{n+1}(\lambda) = -\lambda * f_n(\lambda) - (-\lambda)^{k-2} * f_{n-k+1}(\lambda)$ and $f_n(\lambda)$, $f_{n-k+1}(\lambda)$ satisfy lemma 4. If we randomly arrange from 1 to n+1 into the unlabeled tree T_{n+1} , they are always isomorphic trees and $T_n \& T_{n-k+1}$ are always isomorphic trees. So, $f_n(\lambda)$ and $f_{n-k+1}(\lambda)$ are same for isomorphic trees. Therefore $f_{n+1}(\lambda)$ is always same for isomorphic trees T_{n+1} . $f_1(\lambda) = -\lambda$, $f_2(\lambda) = \lambda^2 - 1$ are always same for isomorphic trees. By mathematical induction Lemma4 is proved

Lemma 5

 $f_n(\lambda)$ is expressed like following math form

For n=2t+1 (odd) for t=0,1,2,...

$$f_n(\lambda) = -\lambda(\lambda^{2t} + a_{t-1}\lambda^{2t-2} + \dots + a_2\lambda^4 + a_1\lambda^2 + a_0)$$

for n = 2t (even) for t=1,2,3...

$$f_n(\lambda) = \lambda^{2t} + a_{t-1}\lambda^{2t-2} + \dots + a_2\lambda^4 + a_1\lambda^2 + a_0$$

 $(a_i \text{ for } i = 0,1,...,t-1 \text{ are real})$

Proof

Assume that f_i for i=1,2,...,n satisfy lemma5

By lemma 4,
$$f_{n+1}(\lambda) = f_n(\lambda) = -\lambda * f_n(\lambda) - (-\lambda)^{k-2} * f_{n-k+1}(\lambda)$$

case(1) n=2t+1

(1)k=2s(even)

$$\begin{split} f_{n+1}(\lambda) &= f_{2t+2}(\lambda) = -\lambda * f_{2t+1}(\lambda) - (-\lambda)^{k-2} * f_{2t-k+2}(\lambda) \\ &= \lambda^2 (\lambda^{2t} + a_{t-1}\lambda^{2t-2} + \dots + a_1\lambda^2 + a_0) - \lambda^{2s-2} (\lambda^{2t-2s+2} + b_{t-s}\lambda^{2t-2s} + \dots + b_1\lambda^2 + b_0) \end{split}$$

For s = 1,2 respectively

$$f_{2t+2}(\lambda) = \lambda^{2t+2} + (a_{t-1} - 1)\lambda^{2t} + (a_{t-2} - b_{t-1})\lambda^{2t-2} + \dots + (a_0 - b_1)\lambda^2 + b_0$$
 for s=1

$$f_{2t+2}(\lambda) = \lambda^{2t+2} + (a_{t-1} - 1)\lambda^{2t} + (a_{t-2} - b_{t-2})\lambda^{2t-2} + \dots + (a_0 - b_0)\lambda^2 \qquad \text{ for s=2}$$

For $s \ge 3$

$$f_{2t+2}(\lambda) = \lambda^{2t+2} + \ (a_{t-1}-1)\lambda^{2t} + (a_{t-2}-b_{t-s})\lambda^{2t-2} + \dots + (a_{s-2}-b_0)\lambda^{2s-2} + \dots + a_0\lambda^2$$

(2)k=2s+1(odd)

$$\begin{split} &f_{n+1}(\lambda) = f_{2t+2}(\lambda) = -\lambda * f_{2t+1}(\lambda) - (-\lambda)^{k-2} * f_{2t-k+} \ (\lambda) \\ &= \lambda^2 (\lambda^{2t} + \ a_{t-1}\lambda^{2t-2} + \dots + a_1\lambda^2 + a_0) + \lambda^{2s-1} * -\lambda (\lambda^{2t-2s} + \ b_{t-s-1}\lambda^{2t-2s} \ + \dots + b_1\lambda^2 + b_0) \\ &= \lambda^{2t+2} + \ (a_{t-1} - 1)\lambda^{2t} + (a_{t-2} - b_{t-s-1})\lambda^{2t-2} + \dots + (a_{s-1} - b_0)\lambda^{2s} + \dots + a_0\lambda^2 \text{ for } s \geq 1 \end{split}$$

So,
$$f_{2t+2}(\lambda)$$
 is expressed like $\lambda^{2t+2} + c_t \lambda^{2t} + \cdots + c_2 \lambda^4 + c_1 \lambda^2 + c_0$ for $n \ge k \ge 2$

case(2) n=2t

(1)k=2s(even)

$$\begin{split} &f_{n+1}(\lambda) = f_{2t+1}(\lambda) = -\lambda * f_{2t}(\lambda) - (-\lambda)^{k-2} * f_{2t-k+1}(\lambda) \\ &= -\lambda(\lambda^{2t} + a_{t-1}\lambda^{2t-2} + \dots + a_1\lambda^2 + a_0) - \lambda^{2s-2} * -\lambda(\lambda^{2t-2} + b_{t-s-1}\lambda^{2t-2s-2} + \dots + b_1\lambda^2 + b_0) \\ &= -\lambda(\lambda^{2t} + (a_{t-1} - 1)\lambda^{2t-2} + (a_{t-2} - b_{t-s-1})\lambda^{2t-4} + \dots + (a_{s-1} - b_0)\lambda^{2s-2} + \dots + a_0) \ \textit{for} \ s \geq 1 \end{split}$$

(2)k=2s+1(odd)

$$\begin{split} &f_{n+1}(\lambda) = f_{2t+1}(\lambda) = -\lambda * f_{2t}(\lambda) - (-\lambda)^{k-2} * f_{2t-k+} \ (\lambda) \\ &= -\lambda(\lambda^{2t} + a_{t-1}\lambda^{2t-2} + \dots + a_1\lambda^2 + a_0) + \lambda^{2s-1} * (\lambda^{2t-2s} + b_{t-s-1}\lambda^{2t-2s-2} + \dots + b_1\lambda^2 + b_0) \\ &= -\lambda(\lambda^{2t} + (a_{t-1} - 1)\lambda^{2t-2} + (a_{t-2} - b_{t-s-1})\lambda^{2t-4} + \dots + (a_{s-1} - b_0)\lambda^{2s-2} + \dots + a_0) \ \textit{for} \ s \geq 1 \end{split}$$

So,
$$f_{2t+1}(\lambda)$$
 is expressed like $-\lambda(\lambda^{2t}+c_{t-1}\lambda^{2t-2}+\cdots+c_2\lambda^4+c_1\lambda^2+c_0)$ for $n\geq k\geq 2$

Conclusively, when f_i for i=1,2,...,n satisfy lemma5, f_{n+1} satisfy lemma5 and

for n=1,

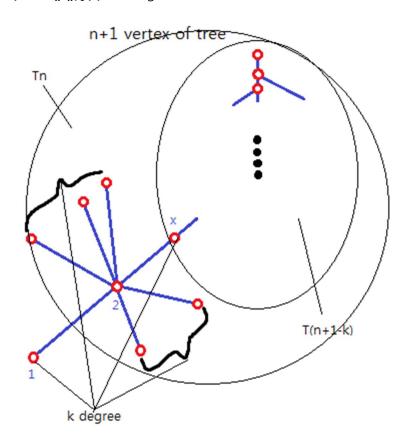
$$A_1 = (0) \rightarrow f_1(\lambda) = \det(A_1 - \lambda I_1) = -\lambda$$

For n=2,

$$A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow f_2(\lambda) = \det(A_2 - \lambda I_2) = \det\begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 1$$

By mathematical induction, lemma 5 is proved.

I will derive the number of nonnegative eigenvalues of A_{n+1} equals to the size of O_{n+1} by mathematical induction. Assume that the number of nonnegative eigenvalues of A_i for i=1,2,...,n equals to the size of O_n . We can make the labeled T_{n+1} by adding vertex (n+1) and edge(n+1,p) to T_n and By lemma 4, change the vertex n+1,p respectively to the vertex 1,2. It means that we can make labeled T_{n+1} of <figure 1> by adding vertex 1 and edge(1,2) to T_n . By lemma 3, $f_{n+1}(\lambda) = -\lambda * f_n(\lambda) - (-\lambda)^{k-2} * f_{n-k+1}(\lambda)$ with figure 1



<figure 1>

For $k \ge 3$, vertex 2 is a element of some different O_n or is not always a element of O_n . Let

vertex $2 \in O_n$ for all possible O_n but there exists $O_n' = O_n - \{2\} + \sum \{v\}$ s.t v is adjacent to $2(v \neq v)$ vertex 1) and $|O_n'| \ge |O_n|$. It is contradiction. Thus vertex 2 is case(2) of Lemma 2.

Therefore,

$$|0_{n+1}| = |0_n| + 1 \& |0_{n-k+1}| = |0_n| - (k-2)$$
 for $k \ge 3$... (a)&(b)

Proof of (a)&(b)

because vertex 2 is case(2) of lemma 2, (a) is proved. when vertex x is case(1) of Lemma 2 with T_{n-k+1} , $O_{n-k+1} + \sum \{v\} = O_n$ s.t v is adjacent to $2(v \neq \text{vertex 1})$ because $O_{n-k+1} + \sum \{v\}$ is the biggest size of possible independent set. when vertex x is case(2) of Lemma 2 with T_{n-k+1} , also $O_{n-k+1} + \sum \{v\} = O_n$ by same above reason. So, whether vertex x is case(1) or case(2) of Lemma 2,

$$|O_{n-k+1}| = |O_n| - |\sum \{v\}| = |O_n| - (k-2)$$
. (b) is proved

For k=2, vertex 2 can be case(1) or case(2) of Lemma 2.

(1) x is case(1) of lemma 2 (
$$|O_n| = |O_{n-k+1}| = |O_{n-1}|$$
)

Obviously, vertex 2 is case(2) of lemma 2. So, $|O_{n+1}| = |O_n| + 1$

(2) x is case(2) of lemma 2 ($|O_n| = |O_{n-k+1}| + 1 = |O_{n-1}| + 1$)

Because x is case(2) of lemma2, vertex 2 is always a element of O_n . So, vertex 2 is case(1) of lemma 2 and $|O_{n+1}| = |O_n|$

Conclusively, we can know that whether x is case(1) or not case(2) of lemma 2,

$$|O_{n+1}| = |O_{n-1}| + 1$$

case(1) n=2t

By lemma 1, $f_{2t}(\lambda)$ has 2t real eigenvalues and By lemma 5, $f_{2t}(\lambda) = f_{2t}(-\lambda)$. So we can order its eigenvalues like this

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_t \ge 0 \ge -\lambda_t \ge \dots \ge -\lambda_2 \ge -\lambda_1$$
$$(f_{2t}(\lambda) = \lambda^{2t} + a_{t-1}\lambda^{2t-2} + \dots + a_1\lambda^2 + a_0)$$

Let $\lambda_{t-q+1} = \dots = \lambda_{t-1} = \lambda_t = 0$. (# of zero eigenvalues = 2q).

Then,
$$f_{2t}(\lambda) = \lambda^{2t} + \dots + a_0 = \lambda^{2q} (\lambda^{2t-2q} + a_{t-1}\lambda^{2t-2-2q} + \dots + a_q)$$
 s.t $a_q \neq 0$

(1)k=2s for s=2,3,...

By using similar way, eigenvalues of f_{2t-2} (λ) can be ordered like this

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{t-s} \ge \lambda_0 = 0 \ge -\lambda_{t-s} \ge \cdots \ge -\lambda_2 \ge -\lambda_1$$
$$(t-s \ge 1, \mathbf{f}_{2t-2s} \quad (\lambda) = -\lambda(\lambda^{2t-2} + b_{t-s-1}\lambda^{2t-2s-2} + \cdots + \mathbf{b}_0))$$

Let
$$\lambda_{t-s-q'+1} = ... = \lambda_{t-s-1} = \lambda_{t-s} = 0$$
. (# of zero eigenvalues = $2q'+1$)
 Then, f_{2t-2s} (λ) = $-\lambda^{2q'+1}(\lambda^{2t-2s-2q'}+b_{t-s-1}\lambda^{2t-2s-2-2q'}+\cdots+b_{q'})$ s.t $b_{q'} \neq 0$

By assumption, $|O_{2t}| = \#$ of nonnegative eigenvalues = t + q, $|O_{2t-2s+1}| = t - s + q' + 1$ $|O_{n-k+1}| = |O_n| - (k-2) \rightarrow |O_{2t-2s}| = |O_{2t}| - (2s-2) \rightarrow t - s + q' + 1 = t + q - (2s-2)$ $\rightarrow q' = q - s + 1$

Thus,
$$f_{2t+1}(\lambda) = -\lambda * f_{2t}(\lambda) - (-\lambda)^{2s-2} * f_{2t-2s+1}(\lambda)$$

$$= -\lambda^{2q+1} (\lambda^{2t-2q} + a_{t-1}\lambda^{2t-2-2q} + \dots + a_q) + \lambda^{2s-2}\lambda^{2q'+1} (\lambda^{2t-2s-2q'} + b_{t-s-1}\lambda^{2t-2s-2-2q'} + \dots + b_{q'})$$

$$= -\lambda^{2q+1} (\lambda^{2t-2q} + a_{t-1}\lambda^{2t-2-2q} + \dots + a_q) + \lambda^{2q+1} (\lambda^{2t-2-2} + b_{t-s-1}\lambda^{2t-4-2q} + \dots + b_{q-s+1})$$

$$= -\lambda^{2q+1} (\lambda^{2t-2q} + (a_{t-1}-1)\lambda^{2t-2-2q} + (a_{t-2} - b_{t-s-1})\lambda^{2t-4-2} + \dots + (a_q - b_{q-s+1}))$$

(2)k=2s+1 for s=1,2,...

eigenvalues of $f_{2t-2s}(\lambda)$ can be ordered like this,

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{t-s} \ge 0 \ge -\lambda_{t-s} \ge \dots \ge -\lambda_2 \ge -\lambda_1$$

$$(f_{2t-2s}(\lambda) = \lambda^{2t-2s} + b_{t-s-1}\lambda^{2t-2s-2} + \dots + b_0)$$

Let $\lambda_{t-s-q'+1}=...=\lambda_{t-s-1}=\lambda_{t-s}=0$ (# of zero eigenvalues = 2q')

Then,
$$f_{2t-2s}(\lambda) = \lambda^{2q'} \left(\lambda^{2t-2s-2q'} + b_{t-s-1} \lambda^{2t-2s-2-2q'} + \dots + b_{q'} \right) \text{ s.t } b_{q'} \neq 0$$

By assumption, $|O_{2t}| = \#$ of nonnegative eigenvalues = t + q, $|O_{2t-2s}| = t - s + q'$

$$|O_{n-k+1}| = |O_n| - (k-2) \rightarrow |O_{2t-2s}| = |O_{2t}| - (2s-1) \rightarrow t - s + q' = t + q - (2s-1)$$

 $\rightarrow q' = q - s + 1$

Thus,
$$\begin{split} &f_{2t+1}(\lambda) = -\lambda * f_{2t}(\lambda) - (-\lambda)^{2s-1} * f_{2t-2}(\lambda) \\ &= -\lambda^{2q+1} \big(\lambda^{2t-2q} + a_{t-1} \lambda^{2t-2-2q} + \cdots + a_q \big) + \lambda^{2s-1} \lambda^{2q'} (\lambda^{2t-2s-2q'} + b_{t-s-1} \lambda^{2t-2s-2-2q'} + \cdots + b_{q'}) \\ &= -\lambda^{2q+1} \big(\lambda^{2t-2q} + a_{t-1} \lambda^{2t-2-} + \cdots + a_q \big) + \lambda^{2q+1} (\lambda^{2t-2-2q} + b_{t-s-1} \lambda^{2t-4-} + \cdots + b_{q-s+1}) \\ &= -\lambda^{2q+1} \big(\lambda^{2t-2} + a_{t-1} \lambda^{2t-2-2q} + \cdots + a_q \big) + \lambda^{2q+1} (\lambda^{2t-2-2} + b_{t-s-1} \lambda^{2t-4-} + \cdots + b_{q-s+1}) \\ &= -\lambda^{2q+1} \big(\lambda^{2t-2} + a_{t-1} \lambda^{2t-2-2q} + \cdots + a_q \big) + \lambda^{2q+1} (\lambda^{2t-2-2} + b_{t-s-1} \lambda^{2t-4-2} + \cdots + a_q - b_{q-s+1}) \\ &= -\lambda^{2q+1} \big(\lambda^{2t-2} + (a_{t-1}-1) \lambda^{2t-2-2q} + (a_{t-2}-b_{t-s-1}) \lambda^{2t-4-2q} + \cdots + (a_q-b_{q-s+1}) \big) \end{split}$$

Therefore, for $3 \le k \le n$, $f_{2t+1}(\lambda)$ has at least 2q+1 zero eigenvalues.

And By interlacing theorem,

$$\lambda_1' \geq \lambda_1 \geq \lambda_2' \geq \cdots \geq \lambda_{t-q+1}' \geq \lambda_{t-q+1} \geq \lambda_{t-q+2}' \geq \cdots \geq \lambda_t' \geq \lambda_t \geq \lambda_0' = 0 \geq -\lambda_t' \geq \cdots \geq -\lambda_1'$$

$$(\text{s.t. } f_{2t+1}(\pm \lambda_i') = 0 \text{ for } i=0,1,...,t \text{ and } f_{2t}(\pm \lambda_i) = 0 \text{ for } i=1,2,...t \ \& \ \lambda_{t-q+1} = \cdots = \lambda_t = 0 \)$$

If $\lambda'_{t-q}=0$, $\lambda'_{t-q}\geq\lambda_{t-q}\geq\lambda'_{t-q+1}\to\lambda_{t-q}=0$. Because $\lambda_{t-q}>\lambda_{t-q+1}=0$, It is contradiction. So, $\lambda'_{t-q+1}=0\to$, $f_{2t+1}(\lambda)$ has t+q+1 nonnegative eigenvalues. And By (a), $|0_{2t+1}|=|0_{2t}|+1=t+q+1$

Conclusively, $|0_{2t+1}| = \#$ of nonnegative eigenvalues of A_{2t+1} for $3 \le k \le n = 2t$

(3)k=2

(1) x is case(1) of lemma 2 (
$$|O_n| = |O_{n-k+1}| = |O_{n-1}|$$
)

Because vertex 2 is case(2) of lemma 2, it is proved by above k=2s for s=1

(2) x is case(2) of lemma 2 ($|O_n| = |O_{n-k+1}| + 1 = |O_{n-1}| + 1$)

By using similar way,

$$f_{n+1}(\lambda) = -\lambda * f_n(\lambda) - (-\lambda)^{k-2} * f_{n-k+1}(\lambda) \quad \rightarrow \quad f_{2t+1} = -\lambda * f_{2t}(\lambda) - f_{2t-1}(\lambda)$$

$$\begin{split} f_{2t}(\lambda) &= \lambda^{2q} \big(\lambda^{2t-} \quad + \, a_{t-1} \lambda^{2t-2-2q} + \cdots + \, a_q \big) \text{ s. t } a_q \neq 0 \ \, (\ \, \text{# of zero eigenvalues} \, = \, 2q \,) \\ \\ f_{2t-1}(\lambda) &= -\lambda^{2q'+1} (\lambda^{2t-2-2} \ ' \, + \, b_{t-2} \lambda^{2t-4-2} \ ' \, + \cdots + \, b_{q'}) \ \, \text{s.t } b_{q'} \neq 0 \, (\ \, \text{# of zero eigenvalues} \, = \, 2q'+1 \,) \end{split}$$

By assumption, $|O_{2t}| = t + q$, $|O_{2t-1}| = t + q'$ and x is case(2) of lemma 2

$$|O_n| = |O_{n-1}| + 1 \rightarrow |O_{2t}| = |O_{2t-1}| + 1 \rightarrow t + q = t + q' + 1$$

 $\rightarrow q' = q - 1$

Thus,
$$f_{2t+1} = -\lambda * f_{2t}(\lambda) - f_{2t-1}(\lambda)$$

$$= -\lambda^{2q+1} (\lambda^{2t-2q} + a_{t-1}\lambda^{2t-2-} + \dots + a_q) + \lambda^{2q'+1} (\lambda^{2t-2-2} + b_{t-2}\lambda^{2t-4-2} + \dots + b_{q'})$$

$$= -\lambda^{2q+1} (\lambda^{2t-2q} + a_{t-1}\lambda^{2t-2-2q} + \dots + a_q) + \lambda^{2q-1} (\lambda^{2t-2q} + b_{t-2}\lambda^{2t-2-2q} + \dots + b_{q-1})$$

$$= -\lambda^{2q-1} (\lambda^{2t-2q} + (a_{t-1} - 1)\lambda^{2t-2q} + (a_{t-2} - b_{t-2})\lambda^{2t-2-} \dots + (a_q - b_q)\lambda^2 - b_{q-1})$$

therefore $b_{q-1} \neq 0$ and $f_{2t+1}(\lambda)$ has 2q-1 zero eigenvalues for k=2.

Thus, $f_{2t+1}(\lambda)$ has t+q nonnegative eigenvalues and since vertex 2 is case(1) of lemma 2, $|0_{n+1}| = |0_n| \rightarrow |0_{2t+1}| = |0_{2t}| = t + q$

Conclusively, $|0_{2t+1}| = \#$ of nonnegative eigenvalues of A_{2t+1} for $2 \le k \le n = 2t$

I will show case(2) n=2t+1 by using same method. It's just simple calculation for proof case(2) n=2t+1

 $f_{2t+1}(\lambda)$ can be ordered like following,

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_t \ge \lambda_0 = 0 \ge -\lambda_t \ge \dots \ge -\lambda_2 \ge -\lambda_1$$

$$(f_{2t+1}(\lambda) = -\lambda(\lambda^{2t} + a_{t-1}\lambda^{2t-2} + \dots + a_1\lambda^2 + a_0))$$

Let
$$\lambda_{t-q+1} = ... = \lambda_{t-1} = \lambda_t = 0$$
. (# of zero eigenvalues = $2q + 1$).
 Then, $f_{2t+1}(\lambda) = -\lambda^{2q+1} (\lambda^{2t-2} + a_{t-1} \lambda^{2t-2-2q} + \cdots + a_q)$ s.t $a_q \neq 0$

(1)k=2s for s=2,3,...

eigenvalues of $f_{2t-2s+2}(\lambda)$ can be ordered like this

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{t-s+1} \ge 0 \ge -\lambda_{t-s+1} \ge \dots \ge -\lambda_2 \ge -\lambda_1$$

$$(f_{2t-2s} \quad (\lambda) = \lambda^{2t-2s} \quad + b_{t-s}\lambda^{2t-2s} + \dots + b_0)$$

Let $\lambda_{t-s-q'+2} = \dots = \lambda_{t-s-1} = \lambda_{t-s+1} = 0$. (# of zero eigenvalues = 2q')

Then,
$$f_{2t-2s}$$
 (λ) = $\lambda^{2q'}(\lambda^{2t-2s+2-2q'} + b_{t-s}\lambda^{2t-2s-2q'} + \dots + b_{q'})$ s.t $b_{q'} \neq 0$

By assumption, $|O_{2t+1}| = t + q + 1$, $|O_{2t-2s+2}| = t - s + 1 + q'$ and $|O_{n-k+1}| = |O_n| - (k-2)$

$$\rightarrow q' = q - s + 2$$

Thus,
$$f_{2t+2}(\lambda) = -\lambda * f_{2t+1}(\lambda) - (-\lambda)^{2s-2} * f_{2t-2s+2}(\lambda)$$

= $\lambda^{2q+2}(\lambda^{2t-2q} + (a_{t-1}-1)\lambda^{2t-2-2q} + (a_{t-2} - b_{t-s})\lambda^{2t-4-} + \dots + (a_q - b_{q-s+2}))$

(2)k=2s+1 for s=1,2,...

eigenvalues of $f_{2t-2s+1}(\lambda)$ can be ordered like this, (# of zero eigenvalues = 2q' + 1)

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{t-s} \ge \lambda_0 = 0 \ge -\lambda_{t-s} \ge \cdots \ge -\lambda_2 \ge -\lambda_1$$
$$(t-s \ge 1, \mathbf{f}_{2t-2s+1}(\lambda) = -\lambda(\lambda^{2t-2} + b_{t-s-1}\lambda^{2t-2s} + \cdots + b_0))$$

Let
$$\lambda_{t-s-q'+1}=...=\lambda_{t-s-1}=\lambda_{t-s}=0$$

Then,
$$f_{2t-2s+1}(\lambda) = -\lambda^{2q'+1}(\lambda^{2t-2s-2q'} + b_{t-s-1}\lambda^{2t-2s-2-2q'} + \dots + b_{q'})$$
 s.t $b_{q'} \neq 0$

By assumption, $|O_{2t+1}| = t + q + 1$, $|O_{2t-2s+1}| = t - s + 1 + q'$ and $|O_{n-k+1}| = |O_n| - (k-2)$

$$\rightarrow q' = q - s + 2$$

Thus,
$$f_{2t+2}(\lambda) = -\lambda * f_{2t+1}(\lambda) - (-\lambda)^{2s-1} * f_{2t-2s}(\lambda)$$

$$=\lambda^{2q+2}(\lambda^{2t-2q}+(a_{t-1}-1)\lambda^{2t-2-2q}+(a_{t-2}-b_{t-s})\lambda^{2t-4-2q}+\cdots+(a_q-b_{q-s+2}))$$

Therefore, for $3 \le k \le n$, $f_{2t+2}(\lambda)$ has at least 2q+2 zero eigenvalues.

And By interlacing theorem,

$$\lambda_1' \geq \lambda_1 \geq \lambda_2' \geq \cdots \geq \lambda_{t-q+1}' \geq \lambda_{t-q+1} \geq \lambda_{t-q+2}' \geq \cdots \geq \lambda_t \geq \lambda_{t+1}' \geq \lambda_0 = 0 \geq -\lambda_{t+1}' \geq \cdots \geq -\lambda_1'$$

(s.t
$$f_{2t+2}(\pm \lambda_i') = 0$$
 for $i=1,...,t,t+1$ and $f_{2t+1}(\pm \lambda_i) = 0$ for $i=0,1,2,...t$ & $\lambda_{t-q+1} = \cdots = \lambda_t = 0$)

If $\lambda'_{t-q}=0$, $\lambda'_{t-q}\geq\lambda_{t-q}\geq\lambda'_{t-q+1}\to\lambda_{t-q}=0$. Because $\lambda_{t-q}>\lambda_{t-q+1}=0$, It is contradiction. So, $\lambda'_{t-q+1}=0\to f_{2t+2}(\lambda)$ has t+q+2 nonnegative eigenvalues. And By (a), $|O_{2t+2}|=|O_{2t+1}|+1=t+q+2$

Conclusively, $|0_{2t+2}| = \#$ of nonnegative eigenvalues of A_{2t+1} for $3 \le k \le n$

(3)k=2

(1) x is case(1) of lemma 2 (
$$|O_n| = |O_{n-k+1}| = |O_{n-1}|$$
)

Because vertex 2 is case(2) of lemma 2, it is proved by above k=2s for s=1

(2) x is case(2) of lemma 2 ($|O_n| = |O_{n-k+1}| + 1 = |O_{n-1}| + 1$)

By using similar way,

$$\begin{split} f_{n+1}(\lambda) &= -\lambda * f_n(\lambda) - (-\lambda)^{k-2} * f_{n-k+1}(\lambda) \quad \to \quad f_{2t+2} = -\lambda * f_{2t+1}(\lambda) - f_{2t}(\lambda) \\ f_{2t+1}(\lambda) &= -\lambda^{2q+1} \left(\lambda^{2t-2q} + a_{t-1} \lambda^{2t-2-} \right. \\ &+ \cdots + a_q \right) \text{s.t } a_q \neq 0 \ (\ \# \ \text{of zero eigenvalues} = \ 2q + 1 \,) \\ f_{2t}(\lambda) &= -\lambda^{2q'} \left(\lambda^{2t-2q'} + \ b_{t-1} \lambda^{2t-2-2q'} + \cdots + b_{q'} \right) \text{ s.t } b_{q'} \neq 0 \ (\ \# \ \text{of zero eigenvalues} = \ 2q' \,) \end{split}$$

By assumption, $|O_{2t+1}| = t + q + 1$, $|O_{2t}| = t + q'$ and x is case(2) of lemma 2

$$|O_n| = |O_{n-1}| + 1 \rightarrow |O_{2t+1}| = |O_{2t}| + 1 \rightarrow t + q + 1 = t + q' + 1$$

 $\rightarrow q' = q$

Thus,
$$f_{2t+2} = -\lambda * f_{2t+1}(\lambda) - f_{2t}(\lambda)$$

$$= \lambda^{2q+2} (\lambda^{2t-2q} + a_{t-1}\lambda^{2t-2-2q} + \dots + a_q) - \lambda^{2q'} (\lambda^{2t-2q'} + b_{t-1}\lambda^{2t-2-2} + \dots + b_{q'})$$

$$= \lambda^{2q+2} (\lambda^{2t-2q} + a_{t-1}\lambda^{2t-2-2q} + \dots + a_q) - \lambda^{2q} (\lambda^{2t-2} + b_{t-1}\lambda^{2t-2-2q} + \dots + b_q)$$

$$= \lambda^{2q} (\lambda^{2t+2-2q} + (a_{t-1} - 1)\lambda^{2t-2} + (a_{t-2} - b_{t-1})\lambda^{2t-2-2q} + \dots + (a_q - b_{q+1})\lambda^2 - b_q)$$

therefore $b_q \neq 0$ and $f_{2t+1}(\lambda)$ has 2q zero eigenvalues for k = 2.

Thus, $f_{2t+1}(\lambda)$ has t+1+q nonnegative eigenvalues and since vertex 2 is case(1) of lemma 2,

$$|0_{n+1}| = |0_n| \rightarrow |0_{2t+2}| = |0_{2t+1}| = t + q + 1$$

Conclusively, $\ |0_{2t+2}| = \ \#$ of nonnegative eigenvalues of A_{2t+2} for $2 \le k \le n = 2t+1$

For n=1,2,3, its $f_n(\lambda)=-\lambda$, λ^2-1 , $-\lambda(\lambda^2-2)$ and $|O_n|=1,1,2$ respectively. It can show easily. So by mathematical induction, the number of nonnegative eigenvalues of A_n equals to the size of the largest independent set of T_n