POW 2021-16 Optimal constant

전해구(기계공학과 졸업생)

September 27, 2021

Problem

For a given positive integer n and a real number a, find the maximum constant b such that

$$
x 1^{n}+x 2^{n}+\cdots+x n^{n}+a x 1 x 2 \ldots x n \geq b(x 1+x 2+\cdots+x n)^{n}
$$

for any non-negative $x 1, x 2, \ldots, x n$
sol
problem of equation can be expressed like following;

$$
\frac{x 1^{n}+x 2^{n}+\cdots+x n^{n}+a x 1 x 2 \ldots x n}{(x 1+x 2+\cdots+x n)^{n}} \geq b
$$

For $x 1+x 2+\cdots+x n=T>0$ and $f(x)=x 1^{n}+x 2^{n}+\cdots+x n^{n}+a x 1 x 2 \ldots x n$, $\max (\mathrm{b})=\min \left(\frac{f(x)}{T^{n}}\right)$.

Therefore $\max (\mathrm{b})=\min \left(\right.$ local extremum, boundary value) for $\frac{f(x)}{T^{n}}$

1)minimum of Boundary value

Boundary value means value of boundary conditions

Boundary conditions means that $(x 1, x 2, \ldots, x n)$ such that there exists $x i=0$ for $i=$ $1,2, \ldots, n$
ex) $\left(\frac{T}{n-1}, \frac{T}{n-1}, \ldots, \frac{T}{n-1}, 0\right)$ or for $\mathrm{n}=4,\left(\frac{T}{2}, \frac{T}{4}, \frac{T}{4}, 0\right)$
so boundary conditions expressed like following;
$(x 1, x 2, \ldots, x n)=(y 1, y 2, \ldots, y n-1,0)$ such that $y 1+y 2+\cdots+y n-1=T$

So, $f(x) / T^{n}=y 1^{n}+y 2^{n}+\cdots+y n-1^{n}$
by AM-GM(arithmetic Mean-Geometric Mean inequality)
$\therefore \min \left(\frac{f(x)}{T^{n}}\right)=\frac{1}{(n-1)^{n-1}}$ such that $y 1=y 2 \ldots=y n=\frac{T}{n-1}$

2)minimum of local extremum (except boundary condition)

By lagrange multiplier method, local extreme points satisfy following condition;

For $\quad f(x)=x 1^{n}+x 2^{n}+\cdots+x n^{n}+a x 1 x 2 \ldots x n, g(x)=x 1+x 2+\cdots+x n-$ $T=0$,

There exists λ such that $\nabla f=\lambda * \nabla g$
$\left(\nabla \mathrm{f}=\left(\frac{\delta \mathrm{f}}{\delta \mathrm{x} 1}, \frac{\delta \mathrm{f}}{\delta \mathrm{x} 2}, \ldots, \frac{\delta \mathrm{f}}{\delta \mathrm{xn}}\right) \quad\right.$ such that $\frac{\delta \mathrm{f}}{\delta \mathrm{xi}}=\mathbf{n x i}{ }^{\mathrm{n}-1}+\mathrm{ax} 1 * . .(\mathrm{xi}-1) *(\mathrm{xi}+1) * . . *$ $\mathbf{x n}, \boldsymbol{\nabla g}=(1,1, \ldots, 1))$

Assume that different $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ exist such that $\boldsymbol{\nabla} \mathbf{f}=\lambda * \boldsymbol{\nabla}(x 1 \neq x 2, x 1 \neq x 3, x 2 \neq x 3)$

$$
\begin{align*}
& \mathrm{nx} 1^{\mathrm{n}-1}+\mathrm{ax} 2 \mathrm{x} 3 \ldots \mathrm{xn}=\lambda \tag{1}\\
& \mathrm{nx} 2^{\mathrm{n}-1}+\mathrm{ax} 1 \mathrm{x} 3 \ldots \mathrm{xn}=\lambda \tag{2}\\
& \mathrm{nx} 3^{\mathrm{n}-1}+\mathrm{ax} 1 \mathrm{x} 2 \ldots \mathrm{xn}=\lambda \tag{3}
\end{align*}
$$

(1) $* x 1=(2)^{*} \mathrm{x} 2 \Rightarrow \mathrm{n}\left(\mathrm{x} 1^{\mathrm{n}-1}+\mathrm{x} 1^{n-2} \mathrm{x} 2 \ldots+\mathrm{x} 1 \mathrm{x} 2^{\mathrm{n}-2}+\mathrm{x} 2^{\mathrm{n}-1}\right)=\lambda$
(1) $* x 2=(3)^{*} x 3 \Rightarrow n\left(x 1^{n-1}+x 1^{n-2} x 3 \ldots+x 1 x 3^{n-2}+x 3^{n-1}\right)=\lambda$
(b)
(a) $=(\mathrm{b}) \Rightarrow \mathrm{x} 1^{\mathrm{n}-2}+\mathrm{x} 1^{n-3}(\mathrm{x} 2+\mathrm{x} 3) \ldots+\left(\mathrm{x} 2^{\mathrm{n}-2}+\mathrm{x} 2^{\mathrm{n}-1} \mathrm{x} 3+\cdots+\mathrm{x} 3^{\mathrm{n}-2}\right)=0$
$\Rightarrow x 1=\mathrm{x} 2=\mathrm{x} 3=0 \Rightarrow$ boundary condition !!
Excepting boundary condition, there not exist three different $\times 1, x 2, x 3$ and at most exist two different $\mathrm{x} 1, \mathrm{x} 2$.

For only one x 1 exist such that $x 1=x 2=\cdots=x n=\frac{T}{n^{\prime}} \quad \therefore \frac{f(x)}{T^{n}}=\frac{a+n}{n^{n}}$

Now see only two different $\mathrm{x} 1, \mathrm{x} 2$ exist ($\mathrm{x} 1=\mathrm{X}, \mathrm{x} 2=\mathrm{Y}, \mathrm{n}$ is greater than 2)
Assume $\mathrm{x} 1=\mathrm{X}, \mathrm{x} 2=\mathrm{Y}$ such that $\mathrm{X}>\mathrm{Y}, \mathrm{xi}=\mathrm{X}$ or Y for $\mathrm{i}=3, \ldots, \mathrm{n}$, and $p X+q Y=T, p+$ $q=n, p, q \geq 1$.(it means that $(x 1, x 2, \ldots, x n)=(X, Y, \ldots X, Y, Y)$ such that $x 1=x 3 \ldots=x p+1=X, x 2=x p+2=\ldots=x n=Y)$
$\frac{f(X, Y, \ldots X, Y, Y)}{T^{n}}=\frac{p X^{n}+q Y^{n}+a X^{p} Y^{q}}{T^{n}}=\frac{(1) * X * \frac{p}{n}+(2) * Y * \frac{p}{n}}{T^{n}}=\frac{\lambda}{n T^{n-1}}$
So we need to minimum of λ
By Using above condition, we can get
$X>Y \Rightarrow \frac{T-q Y}{p}>Y$ and $X>\frac{T-p X}{q} \Rightarrow T>X>\frac{T}{n}>Y>0$
Let $X=T / n+a, Y=T / n-b$ such that $p a=q b, a, b>0 \equiv p X+q Y=T$
$(\mathrm{a})^{*}(\mathrm{X}-\mathrm{Y}) \Rightarrow \frac{\mathrm{n}\left(\mathrm{X}^{\mathrm{n}}-\mathrm{Y}^{n}\right)}{X-Y}=\lambda$
λ is the gradient of $\mathrm{w}=\mathrm{nk}^{\mathrm{n}}$.

Although there exist not critical point of $p=n-1, q=1$, its λ such that $p=n-1, q=1$ and $(n-1) X+Y=T$ is always lower than λ of critical value
So, for a given $\mathrm{b}, \mathrm{p}=\mathrm{n}-1, \mathrm{q}=1$ to get $\min \lambda\left(\mathrm{a}=\frac{\mathrm{q}}{\mathrm{p}} b=\frac{1}{\mathrm{n}-1} \mathrm{~b}\right)$
For $(n-1) X+Y=T(p=n-1, q=1)$

$$
\lambda=\frac{\mathrm{n}\left(\mathrm{X}^{\mathrm{n}}-\mathrm{Y}^{n}\right)}{X-Y}=n\left(\left(\frac{\mathrm{~T}-\mathrm{Y}}{\mathrm{n}-1}\right)^{n}-Y^{n}\right) / \frac{T-n Y}{n-1}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} \lambda}{\mathrm{~d} Y}=n(n-1)\left\{\frac{n\left(\frac{T-Y}{n-1}\right)^{n-1}\left(-\frac{1}{n-1}\right)-n Y^{n-1}}{T-n Y}+\frac{n\left(\left(\frac{T-Y}{n-1}\right)^{n}-Y^{n}\right)}{(T-n Y)^{2}}\right\} \\
& =\frac{n(n-1)}{(T-n Y)^{2}}\left\{n Y\left(\frac{T-Y}{n-1}\right)^{n-1}+Y^{n-1}\left(\left(n^{2}-n\right) Y-n T\right)\right\} \\
& =\frac{\left(n^{2}\right)(n-1)}{(T-n Y)^{2}} Y\left\{\left(\frac{T-Y}{n-1}\right)^{n-1}+(n-1) Y^{n-1}-T Y^{n-2}\right\} \text { for } \frac{T}{n}>Y>0
\end{aligned}
$$

$$
\text { As } \frac{\left(n^{2}\right)(n-1)}{(T-n Y)^{2}} Y>0 \text { for } \frac{\mathrm{T}}{\mathrm{n}}>\mathrm{Y}>0 \text {, Let } \mathrm{h}(\mathrm{Y})=\left(\frac{T-Y}{n-1}\right)^{n-1}+(n-1) Y^{n-1}-T Y^{n-2}
$$

$$
\frac{\mathrm{dh}}{\mathrm{dY}}=(n-1)\left(\frac{T-Y}{n-1}\right)^{n-2}\left(-\frac{1}{n-1}\right)+(\mathrm{n}-1)^{2} Y^{n-2}-(n-2) T Y^{n-3}
$$

$$
=-X^{n-2}+(n-1)^{2} Y^{n-2}-(n-2)((n-1) X+Y) Y^{n-3}
$$

$$
=\left(\mathrm{n}^{2}-3 \mathrm{n}+3\right) \mathrm{Y}^{\mathrm{n}-2}-\left(n^{2}-3 n+2\right) X Y^{n-3}-X^{n-2}
$$

As $\mathrm{Y}^{\mathrm{n}-2}<X Y^{n-3}<X^{n-2}$ for $\frac{\mathrm{T}}{\mathrm{n}}>\mathrm{Y}>0$

$$
\frac{\mathrm{dh}}{\mathrm{dY}}<0 \text { for } \frac{\mathrm{T}}{\mathrm{n}}>\mathrm{Y}>0
$$

So $h(Y)$ is decreasing function and $h(0)=\left(\frac{T}{n-1}\right)^{n-1} \& h\left(\frac{T}{n}\right)=0$.
$\Rightarrow \mathrm{h}(\mathrm{Y})>0$ for $\frac{\mathrm{T}}{\mathrm{n}}>\mathrm{Y}>0 \Rightarrow \frac{\mathrm{~d} \lambda}{\mathrm{dY}}=\frac{\left(n^{2}\right)(n-1)}{(T-n Y)^{2}} Y h(Y)>0$ for $\frac{\mathrm{T}}{\mathrm{n}}>\mathrm{Y}>0$
$\Rightarrow \lambda$ is increasing function and $\lambda(0)=\mathrm{n}\left(\frac{\mathrm{T}}{\mathrm{n}-1}\right)^{\mathrm{n}-1}<\lambda(\mathrm{Y})$ for $\frac{\mathrm{T}}{\mathrm{n}}>\mathrm{Y}>0$
$\Rightarrow \frac{\lambda(0)}{n T^{n-1}}=\frac{1}{(n-1)^{n-1}} \leq \min \left(\frac{f(x)}{T^{n}}\right)=\frac{\lambda}{n T^{n-1}}$ for $\frac{\mathrm{T}}{\mathrm{n}}>\mathrm{Y}>0$
Therefore $\min \left(\frac{f(x)}{T^{n}}\right)$ of critical points such that two different exist is always greater than $\min \left(\frac{f(x)}{T^{n}}\right)$ of boundary condition $\left(=\frac{1}{(n-1)^{n-1}}\right)$

Conclusively, $\max (b)=\min \left(\frac{1}{(n-1)^{n-1}}, \frac{a+n}{n^{n}}\right)$ for $n \geq 2$
for $n=1$
$\frac{x 1+a x 1}{x 1} \geq b \Rightarrow \therefore \max (\mathrm{~b})=\mathrm{a}+1$
for $n \geq 2$
$\therefore \max (b)=\frac{1}{(n-1)^{n-1}}$ for $a \geq \frac{n^{n}}{(n-1)^{n-1}}-n$
$\max (\mathrm{b})=\frac{a+n}{n^{n}} \quad$ for $a \leq \frac{n^{n}}{(n-1)^{n-1}}-n$

