
POW 2021-15 Triangles with integer sides

2018xxxx 이도현

Problem : For a natural number n, let an be the number of congruence classes of triangles
whose all three sides have integer length and its perimeter is n. Obtain a formula for an.

Answer) For every nonnegative integer n,

a12n = 3n2 a12n+1 = 3n2 + 2n a12n+2 = 3n2 + n

a12n+3 = 3n2 + 3n+ 1 a12n+4 = 3n2 + 2n a12n+5 = 3n2 + 4n+ 1

a12n+6 = 3n2 + 3n+ 1 a12n+7 = 3n2 + 5n+ 2 a12n+8 = 3n2 + 4n+ 1

a12n+9 = 3n2 + 6n+ 3 a12n+10 = 3n2 + 5n+ 2 a12n+11 = 3n2 + 7n+ 4

Solution) Number of congruence classes of triangles is same as number of ordered triple (a, b, c) (a ≥
b ≥ c > 0) with a < b + c. Because two triangles with same side lengths are congruent to each
other(SSS congruence), and given positive number a ≥ b ≥ c > 0 with a < b+ c, it is possible to
construct a triangle with side length a, b, c. (In a point of Euclidean geometry view, it is possible
to construct a triangle with given such length a, b, c, and in a point of analytic geometry view, a

triangle in plane with vertex coordinates (0, 0), (a, 0), (a
2+b2−c2

2a ,

√
−(a+b+c)(a+b−c)(a−b+c)(a−b−c)

2a )
has side lengths a, b, c.

So, an = number of ordered triple (a, b, c) with a, b, c ∈ Z, a ≥ b ≥ c > 0 and a < b + c (or,
equivalently, a < n

2 . Denote An = {(a, b, c) : a + b + c = n, a, b, c ∈ Z, a ≥ b ≥ c > 0, a < n
2 }.

Then |An| = an.

Lemma1) For positive odd integer n, an+3 = an.

proof) For positive odd integer n, define f : An → An+3 as f((a, b, c)) = (a+ 1, b+ 1, c+ 1).
Then, it is well-defined because a < n

2 ⇒ (a+ 1) < n+3
2 , and it is obviously injective. Also, it is

surjective since (x, y, z) ∈ An+3 implies x < 1
2(n+3)⇒ (x− 1) < 1

2(n+1)⇒ (x− 1) < 1
2n (last

inequality holds because n+ 1 is even.) and z > 1 because z = 1 implies x > y (∵ x+ y is odd)
⇒ x ≥ y+ z. Thus, (x− 1, y− 1, z− 1) ∈ An and f((x− 1, y− 1, z− 1)) = (x, y, z). Therefore f
is bijection, and |An| = |An+3|.

Lemma2) For positive even integer n, an+1 = an + dn6 e

proof) For positive even integer n, consider a map f : An → An+1 as f((a, b, c)) = (a+1, b, c).
It is well-defined since a < n

2 ⇒ a < n−1
2 ⇒ (a+ 1) < n+1

2 .
Injectivity of f is obvious. But f is not surjective. Any element of An+1 of the form (x, x, y) is

not in f(An), and also any element of An+1\f(An) is of the form (x, x, y). (∵ for any element of
An+1, (a, b, c) with a > b, f((a− 1, b, c)) = (a, b, c). So, what to show is An+1 has dn6 e elements
of the form (x, x, y).

For any element of An+1 of the form (x, x, y) can be expressed as (n2 −k+1, n2 −k+1, 2k−1)
for some k ∈ Z. From condition of An+1, 1 ≤ 2k − 1 ≤ n

2 − k + 1⇔ 1 ≤ k ≤ n
6 + 2

3 . And since n
is even, bn6 + 2

3c = d
n
6 e. Thus, there are dn6 e elements of the form (x, x, y) in An+1.
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Theorem) For every nonnegative integer n,

a12n = 3n2 a12n+1 = 3n2 + 2n a12n+2 = 3n2 + n

a12n+3 = 3n2 + 3n+ 1 a12n+4 = 3n2 + 2n a12n+5 = 3n2 + 4n+ 1

a12n+6 = 3n2 + 3n+ 1 a12n+7 = 3n2 + 5n+ 2 a12n+8 = 3n2 + 4n+ 1

a12n+9 = 3n2 + 6n+ 3 a12n+10 = 3n2 + 5n+ 2 a12n+11 = 3n2 + 7n+ 4

proof) Using induction. For the base case, a0 = a1 = a2 = 0 and it satisfies the statement.
Now consider an for n > 2.

From Lemma1, a12n = a12(n−1)+9 = 3(n− 1)2 + 6(n− 1) + 3 = 3n2.

From Lemma2, a12n+1 = a12n+1 + d12n6 e = 3n2 + 2n.

From Lemma1, a12n+2 = a12(n−1)+11 = 3(n− 1)2 + 7(n− 1) + 4 = 3n2 + n.

From Lemma2, a12n+3 = a12n+2 + d12n+2
6 e = (3n2 + n) + (2n+ 1) = 3n2 + 3n+ 1.

From Lemma1, a12n+4 = a12n+1 = 3n2 + 2n.

From Lemma2, a12n+5 = a12n+4 + d12n+4
6 e = (3n2 + 2n) + (2n+ 1) = 3n2 + 4n+ 1.

From Lemma1, a12n+6 = a12n+3 = 3n2 + 3n+ 1.

From Lemma2, a12n+7 = a12n+6 + d12n+6
6 e = (3n2 + 3n+ 1) + (2n+ 1) = 3n2 + 5n+ 2.

From Lemma1, a12n+8 = a12n+5 = 3n2 + 4n+ 1.

From Lemma2, a12n+9 = a12n+8 + d12n+8
6 e = (3n2 + 4n+ 1) + (2n+ 2) = 3n2 + 6n+ 3.

From Lemma1, a12n+10 = a12n+7 = 3n2 + 5n+ 2.

From Lemma2, a12n+11 = a12n+10 + d12n+10
6 e = (3n2 + 5n+ 2) + (2n+ 2) = 3n2 + 7n+ 4.
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