POW 2021-15 Triangles with integer sides

2018xxxx 이도현

Problem : For a natural number n, let a_{n} be the number of congruence classes of triangles whose all three sides have integer length and its perimeter is n. Obtain a formula for a_{n}.

Answer) For every nonnegative integer n,

$$
\begin{aligned}
a_{12 n} & =3 n^{2} & a_{12 n+1} & =3 n^{2}+2 n \\
a_{12 n+3} & =3 n^{2}+3 n+1 & a_{12 n+4} & =3 n^{2}+2 n \\
a_{12 n+6} & =3 n^{2}+3 n+1 & a_{12 n+7} & =3 n^{2}+5 n+2 \\
a_{12 n+9} & =3 n^{2}+6 n+3 & a_{12 n+10} & =3 n^{2}+5 n+2
\end{aligned} r \begin{array}{lrl}
& a_{12 n+2} & =3 n^{2}+n \\
a_{12 n+5} & =3 n^{2}+4 n+1 \\
a_{12 n+8} & =3 n^{2}+4 n+1 \\
a_{12 n+11} & =3 n^{2}+7 n+4
\end{array}
$$

Solution) Number of congruence classes of triangles is same as number of ordered triple $(a, b, c)(a \geq$ $b \geq c>0$) with $a<b+c$. Because two triangles with same side lengths are congruent to each other(SSS congruence), and given positive number $a \geq b \geq c>0$ with $a<b+c$, it is possible to construct a triangle with side length a, b, c. (In a point of Euclidean geometry view, it is possible to construct a triangle with given such length $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and in a point of analytic geometry view, a triangle in plane with vertex coordinates $(0,0),(a, 0),\left(\frac{a^{2}+b^{2}-c^{2}}{2 a}, \frac{\sqrt{-(a+b+c)(a+b-c)(a-b+c)(a-b-c)}}{2 a}\right)$ has side lengths a, b, c.

So, $a_{n}=$ number of ordered triple (a, b, c) with $a, b, c \in \mathbb{Z}, a \geq b \geq c>0$ and $a<b+c$ (or, equivalently, $a<\frac{n}{2}$. Denote $A_{n}=\left\{(a, b, c): a+b+c=n, a, b, c \in \mathbb{Z}, a \geq b \geq c>0, a<\frac{n}{2}\right\}$. Then $\left|A_{n}\right|=a_{n}$.

Lemma1) For positive odd integer $n, a_{n+3}=a_{n}$.
proof) For positive odd integer n, define $f: A_{n} \rightarrow A_{n+3}$ as $f((a, b, c))=(a+1, b+1, c+1)$. Then, it is well-defined because $a<\frac{n}{2} \Rightarrow(a+1)<\frac{n+3}{2}$, and it is obviously injective. Also, it is surjective since $(x, y, z) \in A_{n+3}$ implies $x<\frac{1}{2}(n+3) \Rightarrow(x-1)<\frac{1}{2}(n+1) \Rightarrow(x-1)<\frac{1}{2} n$ (last inequality holds because $n+1$ is even.) and $z>1$ because $z=1$ implies $x>y(\because x+y$ is odd) $\Rightarrow x \geq y+z$. Thus, $(x-1, y-1, z-1) \in A_{n}$ and $f((x-1, y-1, z-1))=(x, y, z)$. Therefore f is bijection, and $\left|A_{n}\right|=\left|A_{n+3}\right|$.

Lemma2) For positive even integer $n, a_{n+1}=a_{n}+\left\lceil\frac{n}{6}\right\rceil$
proof) For positive even integer n, consider a map $f: A_{n} \rightarrow A_{n+1}$ as $f((a, b, c))=(a+1, b, c)$. It is well-defined since $a<\frac{n}{2} \Rightarrow a<\frac{n-1}{2} \Rightarrow(a+1)<\frac{n+1}{2}$.

Injectivity of f is obvious. But f is not surjective. Any element of A_{n+1} of the form (x, x, y) is not in $f\left(A_{n}\right)$, and also any element of $A_{n+1} \backslash f\left(A_{n}\right)$ is of the form (x, x, y). $(\because$ for any element of $A_{n+1},(a, b, c)$ with $a>b, f((a-1, b, c))=(a, b, c)$. So, what to show is A_{n+1} has $\left\lceil\frac{n}{6}\right\rceil$ elements of the form (x, x, y).

For any element of A_{n+1} of the form (x, x, y) can be expressed as $\left(\frac{n}{2}-k+1, \frac{n}{2}-k+1,2 k-1\right)$ for some $k \in \mathbb{Z}$. From condition of $A_{n+1}, 1 \leq 2 k-1 \leq \frac{n}{2}-k+1 \Leftrightarrow 1 \leq k \leq \frac{n}{6}+\frac{2}{3}$. And since n is even, $\left\lfloor\frac{n}{6}+\frac{2}{3}\right\rfloor=\left\lceil\frac{n}{6}\right\rceil$. Thus, there are $\left\lceil\frac{n}{6}\right\rceil$ elements of the form (x, x, y) in A_{n+1}.

Theorem) For every nonnegative integer n,

$$
\begin{aligned}
a_{12 n} & =3 n^{2} & a_{12 n+1} & =3 n^{2}+2 n & a_{12 n+2} & =3 n^{2}+n \\
a_{12 n+3} & =3 n^{2}+3 n+1 & a_{12 n+4} & =3 n^{2}+2 n & a_{12 n+5} & =3 n^{2}+4 n+1 \\
a_{12 n+6} & =3 n^{2}+3 n+1 & a_{12 n+7} & =3 n^{2}+5 n+2 & a_{12 n+8} & =3 n^{2}+4 n+1 \\
a_{12 n+9} & =3 n^{2}+6 n+3 & a_{12 n+10} & =3 n^{2}+5 n+2 & a_{12 n+11} & =3 n^{2}+7 n+4
\end{aligned}
$$

proof) Using induction. For the base case, $a_{0}=a_{1}=a_{2}=0$ and it satisfies the statement. Now consider a_{n} for $n>2$.

From Lemma1, $a_{12 n}=a_{12(n-1)+9}=3(n-1)^{2}+6(n-1)+3=3 n^{2}$.
From Lemma2, $a_{12 n+1}=a_{12 n+1}+\left\lceil\frac{12 n}{6}\right\rceil=3 n^{2}+2 n$.
From Lemma1, $a_{12 n+2}=a_{12(n-1)+11}=3(n-1)^{2}+7(n-1)+4=3 n^{2}+n$.
From Lemma2, $a_{12 n+3}=a_{12 n+2}+\left\lceil\frac{12 n+2}{6}\right\rceil=\left(3 n^{2}+n\right)+(2 n+1)=3 n^{2}+3 n+1$.
From Lemma1, $a_{12 n+4}=a_{12 n+1}=3 n^{2}+2 n$.
From Lemma2, $a_{12 n+5}=a_{12 n+4}+\left\lceil\frac{12 n+4}{6}\right\rceil=\left(3 n^{2}+2 n\right)+(2 n+1)=3 n^{2}+4 n+1$.
From Lemma1, $a_{12 n+6}=a_{12 n+3}=3 n^{2}+3 n+1$.
From Lemma2, $a_{12 n+7}=a_{12 n+6}+\left\lceil\frac{12 n+6}{6}\right\rceil=\left(3 n^{2}+3 n+1\right)+(2 n+1)=3 n^{2}+5 n+2$.
From Lemma1, $a_{12 n+8}=a_{12 n+5}=3 n^{2}+4 n+1$.
From Lemma2, $a_{12 n+9}=a_{12 n+8}+\left\lceil\frac{12 n+8}{6}\right\rceil=\left(3 n^{2}+4 n+1\right)+(2 n+2)=3 n^{2}+6 n+3$.
From Lemma1, $a_{12 n+10}=a_{12 n+7}=3 n^{2}+5 n+2$.
From Lemma2, $a_{12 n+11}=a_{12 n+10}+\left\lceil\frac{12 n+10}{6}\right\rceil=\left(3 n^{2}+5 n+2\right)+(2 n+2)=3 n^{2}+7 n+4$.

