Problem. Prove or disprove the following:

There exist an infinite sequence of \(f_n : [0, 1] \rightarrow \mathbb{R} \), \(n = 1, 2, 3, \ldots \), such that

1. \(f_n(0) = f_n(1) = 0 \) for any \(n \)
2. \(f_n \left(\frac{a+b}{2} \right) \leq f_n(a) + f_n(b) \) for any \(a, b \in [0, 1] \)
3. \(f_n - cf_m \) is not identically zero for any \(c \in \mathbb{R} \) and \(n \neq m \).

Solution. The answer is, **exist**. Let's construct such \(f_n \)’s.

Let \(V \) be a set of such functions; i.e.,

\[
V = \left\{ f : [0, 1] \rightarrow \mathbb{R} \mid f(0) = f(1) = 0, \forall a, b \in [0, 1], f \left(\frac{a+b}{2} \right) \leq f(a) + f(b) \right\}.
\]

One can easily show that:

i) if \(f, g \in V \), then \(f + g \in V \), and

ii) if \(f \in V \), \(\lambda \in \mathbb{R}_{>0} \) then \(\lambda f \in V \).

Suppose we have two independent functions \(g_1, g_2 \in V \), define \(f_n = n \cdot g_1 + g_2 \in V \).

(Here, \(g_1, g_2 \) are independent means that \(g_1 \neq 0 \), \(g_2 \neq 0 \),
and there is no \(c \in \mathbb{R} \) s.t. \(g_1 = c \cdot g_2 \).)

Then, \(f_n \) and \(f_m \) are independent for \(n \neq m \).

Hence, it is enough to find two independent functions \(g_1, g_2 \in V \).

First, let’s consider necessary conditions for \(g \in V \).
1. For \(x \in [0,1] \), take \(a = b = x \) and (2) implies
\[g \left(\frac{a+b}{2} \right) \leq g(a) + g(b) \implies g(x) \geq 0. \]

2. \[g \left(\frac{1}{2} \right) \leq g(0) + g(1) = 0, \]
\[g \left(\frac{1}{4} \right) \leq g(0) + g(\frac{1}{2}) \leq 0, \quad g \left(\frac{3}{4} \right) \leq g(\frac{1}{2}) + g(1) \leq 0, \]
and so on \(g \left(\frac{1}{2^k} \right) \leq 0, \quad g \left(\frac{1}{2^{k+1}} \right) \leq 0 \).

One can show that
\[g \left(\frac{1}{2^k} \right) \leq 0 \]
for nonnegative integer \(k \) and positive odd integer \(l \), \(1 \leq l < 2^k \),
by induction on \(k \). Since \(g \geq 0 \), \(g \left(\frac{l}{2^k} \right) = 0 \).

Let \(A = \left\{ \frac{l}{2^k} \mid k, l \in \mathbb{Z}_{\geq 0}, \quad 0 \leq l \leq 2^k \right\} \subset [0,1] \).
So, \(g(x) = 0 \) for \(x \in A \), and we have to assign values of \(g(x) \) for \(x \in [0,1] \setminus A \).

Define \(g_1(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in [0,1] \setminus A \end{cases} \).

We have to show \(g_1 \) satisfies the condition (2).

Equivalently, write (2) as
\[g_1(x) \leq g_1(x-h) + g_1(x+h) \]
for \(x \in [0,1] \), \(0 \leq h \leq \min \{x, 1-x\} \).
— If \(x \in A \), the inequality holds obviously.
— Suppose \(x \in [0,1] \setminus A \). Note that \(\frac{x+h}{2} \in A \) if \(a, b \in A \);
 hence, at least one of \(x-h, x+h \) is in \([0,1] \setminus A \),
 so the inequality holds.

So far, we've found \(g_1 \neq 0 \).
For another one, recall the binary expansion: $\pi \in [0,1)$ has a unique binary expansion

$$
\pi = 0.\ a_1 a_2 a_3 \cdots \ (2) = \sum_{j=1}^{\infty} \frac{a_j}{2^j}, \quad a_j \in \{0,1\}.
$$

For the uniqueness, we do not allow the situation that the sequence $\{a_j\}$ is "eventually 1".

Define $\delta_2(x) = \liminf_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} a_j$ for $x \in [0,1)$, and $\delta_2(0) = 0$.

\[x = 0.\ a_1 a_2 \cdots \ (2), \quad y = 0.\ b_1 b_2 \cdots \ (2), \quad \text{and} \]
\[\frac{1}{2}(x+y) = 0.\ a_1 a_2 \cdots \ (2) + 0.\ b_1 b_2 \cdots \ (2) = 0.\ c_1 c_2 \cdots \ (2). \]

For the condition (2), ETS
\[\sum_{j=1}^{N} c_j \leq \sum_{j=1}^{N} (a_j + b_j), \]
and this is true since carry decreases the total summation of digits.

(For example (allow the following weird notation for a while):)
\[x+y \ | \ 1011_{(2)} + 11_{(2)} = 1022_{(2)} \rightarrow 1030_{(2)} \rightarrow 1110_{(2)} \]
\[\sum c_j \ | \ 3 + 2 = 5 \rightarrow 4 \rightarrow 3 \]

Of course, there are cases that $\{c_j\}$ is eventually 1, but again to make these 1's to 0's decreases the total summation of digits.
\[0.\ \cdots \ 0111 \cdots \ (2) \rightarrow 0.\ \cdots \ 1000 \cdots \ (2). \]

Hence
\[\frac{1}{N} \sum_{j=1}^{N} c_j \leq \frac{1}{N} \sum_{j=1}^{N} a_j + \frac{1}{N} \sum_{j=1}^{N} b_j, \]
and
\[g\left(\frac{x+y}{2}\right) = \liminf_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} c_j \leq \liminf_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} a_j + \liminf_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} a_j \]
\[= g_2(x) + g_2(y). \]
And
\[
\frac{1}{3} = \sum_{j=1}^{\infty} \left(\frac{1}{4} \right)^j = 0.1010101\ldots_{(2)}, \quad g_2(\frac{1}{3}) = \frac{1}{3},
\]
\[
\frac{1}{7} = \sum_{j=1}^{\infty} \left(\frac{1}{8} \right)^j = 0.001001001\ldots_{(2)}, \quad g_2(\frac{1}{7}) = \frac{1}{3} \neq g_2(\frac{1}{3}),
\]

thus \(g_1, g_2 \neq 0 \) are independent. Done! \(\square \)