2021-07 Odd determinant

Hanpil Kang

May 2, 2021

Problem.

Let A_{N} be an $N \times N$ matrix whose entries are i.i.d. Bernoulli random variables with probability $1 / 2$, i.e.,

$$
\mathbb{P}\left(\left(A_{N}\right)_{i j}=0\right)=\mathbb{P}\left(\left(A_{N}\right)_{i j}=1\right)=\frac{1}{2}
$$

Let p_{N} be the probability that $\operatorname{det} A_{N}$ is odd. Find $\lim _{N \rightarrow \infty} p_{N}$.

Solution.

A_{N} having odd determinant is equivalent with A_{N} having non-zero determinant, if we consider A_{N} over \mathbb{Z}_{2}. This is also equivalent to A_{N} is invertible, and set of row vector is linearly independent.

Let's calculate the number of invertible $N \times N$ matrices over \mathbb{Z}_{2}. We will choose $(i+1)$ 'th row vector \vec{v}_{i+1} as one not included in $S=\operatorname{span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{i}}\right\}$. Each element of S can be uniquely represented as $\sum_{j=1}^{i} c_{j} \overrightarrow{v_{j}}$ where $c_{j} \in \mathbb{Z}_{2}$, so $|S|=2^{i}$ and $\left|S^{c}\right|=\left|\mathbb{Z}_{2}^{n} \backslash S\right|=2^{N}-2^{i}$. Using rule of product, the number of invertible matrices is $\prod_{i=0}^{N-1}\left(2^{N}-2^{i}\right) . p_{N}$ is $\prod_{i=1}^{N}\left(1-2^{-i}\right)$ and $\lim _{N \rightarrow \infty} p_{N}=$ $\prod_{i=1}^{\infty}\left(1-2^{-i}\right)=0.288788095 \cdots$.

