pow2021-06

Sunghun Ko

April 2021

Let $l(k)$ be the least positive integer such that for any integer $n \geq l(k)$ every element of \mathcal{A}_{n} has nondecreasing subsequence of length greater than or equal to k. It is clear that $l(1)=1, l(2)=2$, $l(3)=4$. From these observations one may hope that $l(k+1)=2^{k}$ for all $k \geq 0$. We show this thought is indeed true via induction on k. Assume $l(m)=2^{m-1}$ for all $m \leq k$. Then we have useful lemma:

Lemma 1. Let $\left\{a_{i}\right\}_{i \in[n]}$ be element of \mathcal{A}_{n} whose nondecreasing subsequence is length of at most k. Then 1 appears in $\left\{a_{i}\right\}_{i \in[n]}$ at most k times, and any number greater than 2^{m} appears in $\left\{a_{i}\right\}_{i \in[n]}$ at most $k-m-1$ times, for $m=0,1,2, \cdots, k-1$.

Proof. The first argument is trivial. For the second argument, assume $x>2^{m}$ appears in $\left\{a_{i}\right\}_{i \in[n]}$ more than $k-m-1$ times. Since $\left\{a_{i}\right\}_{i \in[n]} \in \mathcal{A}_{n}$ existence of x implies $n>2^{m}$ and $\left\{a_{i}\right\}_{i \leq 2^{m}}$ contains nondecreasing subsequence of length $m+1$, while the last term is less than or equal to 2^{m}. Moreover $\left\{a_{i}\right\}_{i \leq 2^{m}}$ contains no x. Thus by joining x to the end of such subsequence $k-m$ times we get nondecreasing subsequence of length $k+1$, which is contradiction.

Thus if maximal length of nondecreasing subsequence of $\left\{a_{i}\right\}_{i \in[n]}$ is $k, 1$ appears at most k times, 2 appears at most $k-1$ times, 3,4 appears at most $k-2$ times, and so on. Therefore we get

$$
n \leq k+(k-1)\left(2^{1}-2^{0}\right)+\cdots+\left(2^{k-1}-2^{k-2}\right)=2^{k}-1
$$

and if $n \geq 2^{k},\left\{a_{i}\right\}_{i \in[n]}$ has nondecreasing subsequence of length $k+1$, which implies $l(k+1) \leq 2^{k}$. We claim this bound is optimal, by suggesting following sequence: Consider ordered sets

$$
I_{k}=\left\{2^{k}, 2^{k}-1,2^{k}-2, \cdots, 3,2,1\right\}, k \in \mathbb{Z}_{\geq 0}
$$

Then ordered sum S_{k-1} of $I_{0}, I_{1}, I_{2}, \cdots, I_{k-1}$ is:

$$
S_{k-1}=\left\{1,2,1,4,3,2,1,8,7,6,5,4,3,2,1,16,15, \cdots, 2^{k-1}, 2^{k-1}-1, \cdots, 2,1\right\}
$$

The length of S_{k-1} is $2^{k}-1$. Since each I_{i} is decreasing, any nondecreasing subsequence of S_{k-1} cannot contain more than element of I_{i} for $i=0,1,2, \cdots, k-1$. Thus its length is at most k and $l(k+1)>2^{k}-1$, which gives $l(k+1)=2^{k}$.

