pow2021-06

Sunghun Ko

April 2021

Let l(k) be the least positive integer such that for any integer $n \ge l(k)$ every element of \mathcal{A}_n has nondecreasing subsequence of length greater than or equal to k. It is clear that l(1) = 1, l(2) = 2, l(3) = 4. From these observations one may hope that $l(k+1) = 2^k$ for all $k \ge 0$. We show this thought is indeed true via induction on k. Assume $l(m) = 2^{m-1}$ for all $m \le k$. Then we have useful lemma:

Lemma 1. Let $\{a_i\}_{i \in [n]}$ be element of \mathcal{A}_n whose nondecreasing subsequence is length of at most k. Then 1 appears in $\{a_i\}_{i \in [n]}$ at most k times, and any number greater than 2^m appears in $\{a_i\}_{i \in [n]}$ at most k - m - 1 times, for $m = 0, 1, 2, \dots, k - 1$.

Proof. The first argument is trivial. For the second argument, assume $x > 2^m$ appears in $\{a_i\}_{i \in [n]}$ more than k - m - 1 times. Since $\{a_i\}_{i \in [n]} \in \mathcal{A}_n$ existence of x implies $n > 2^m$ and $\{a_i\}_{i \leq 2^m}$ contains nondecreasing subsequence of length m + 1, while the last term is less than or equal to 2^m . Moreover $\{a_i\}_{i \leq 2^m}$ contains no x. Thus by joining x to the end of such subsequence k - m times we get nondecreasing subsequence of length k + 1, which is contradiction.

Thus if maximal length of nondecreasing subsequence of $\{a_i\}_{i \in [n]}$ is k, 1 appears at most k times, 2 appears at most k-1 times, 3,4 appears at most k-2 times, and so on. Therefore we get

$$n \le k + (k-1)(2^1 - 2^0) + \dots + (2^{k-1} - 2^{k-2}) = 2^k - 1,$$

and if $n \ge 2^k$, $\{a_i\}_{i \in [n]}$ has nondecreasing subsequence of length k + 1, which implies $l(k + 1) \le 2^k$. We claim this bound is optimal, by suggesting following sequence: Consider ordered sets

$$I_k = \{2^k, 2^k - 1, 2^k - 2, \cdots, 3, 2, 1\}, k \in \mathbb{Z}_{\geq 0}.$$

Then ordered sum S_{k-1} of $I_0, I_1, I_2, \cdots, I_{k-1}$ is:

$$S_{k-1} = \{1, 2, 1, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 16, 15, \cdots, 2^{k-1}, 2^{k-1} - 1, \cdots, 2, 1\}$$

The length of S_{k-1} is $2^k - 1$. Since each I_i is decreasing, any nondecreasing subsequence of S_{k-1} cannot contain more than element of I_i for $i = 0, 1, 2, \dots, k-1$. Thus its length is at most k and $l(k+1) > 2^k - 1$, which gives $l(k+1) = 2^k$.