POW 2021-05

Finite generation of a group

2018 김기수

Let $k=\mathbb{F}_{2}$ be the field with two elements, namely 0 and 1 . Claim that the ring of polynomials $k[x]$ on one variable x as an additive group gives a counterexample for the statement. Clearly, as we have $x^{n} \in k[x]$ for $n \in \mathbb{Z}_{\geq 0}, k[x]$ is an infinite group. Observe that for each element $\sum_{i=0}^{n} c_{i} x^{i} \in k[x]$ we have

$$
\left(\sum_{i=0}^{n} c_{i} x^{i}\right)+\left(\sum_{i=0}^{n} c_{i} x^{i}\right)=\sum_{i=0}^{n} 2 \cdot c_{i} x^{i}=\sum_{i=0}^{n} 0 \cdot x^{i}=0
$$

hence every element of $k[x]$ has degree at most 2 , in particular less than $3 . k[x]$ satisfies the assumptions of the statement.

Let S be a finite subset of $k[x]$. Exploiting the fininteness, there exists an integer $n \geq 0$ such that every element of S has degree at most n. Every element of $\langle S\rangle$ has degree at most n. Therefore, $x^{n+1} \notin\langle S\rangle$ and S does not generate $k[x]$. As we cannot choose any finite subset of $k[x]$ that generates $k[x]$, it is not finitely generated as an additive group.

