pow2021-04: revised

Ko Sunghun

April 2021

Problem. For any positive semideifinite A and B, prove that $\left[\lambda\left(A^{m} B^{m}\right)\right]^{\frac{1}{m}} \leq\left[\lambda\left(A^{m+1} B^{m+1}\right)\right]^{\frac{1}{m+1}}$.
We prove useful lemma firstly and proceed by induction on m. Since A and B are both hermitian, there exist unitary matrices U, V and diagonal matrices D_{1}, D_{2} such that $A=U D_{1} U^{*}, B=V D_{2} V^{*}$. Moreover, diagonal entries of D_{1} and D_{2} are nonnegative, thus $\sqrt{D_{1}}$ and $\sqrt{D_{2}}$ are well defined. Note that from these definitions we may define \sqrt{A}, \sqrt{B} as $\sqrt{A}=U \sqrt{D_{1}} U^{*}, \sqrt{B}=V \sqrt{D_{2}} V^{*}$, too. We have following lemma:

Lemma 1. for any $\mu \in \mathbb{C} \backslash\{0\}$ and $p, q, r \in \mathbb{Z}_{>0}, \mu$ is eigenvalue of $B^{p} A^{q} B^{r}$ if and only if μ is eigenvalue of $B^{p+1} A^{q} B^{r-1}$.

Proof. Without loss of generality we may assume B is diagonal, since

$$
\begin{aligned}
& B^{p} A^{q} B^{r} x=\mu x \\
\Longleftrightarrow & \left(V D_{2}^{p} V^{*}\right)\left(U D_{1}^{q} U^{*}\right)\left(V D_{2}^{r} V^{*}\right) x=\mu x \\
\Longleftrightarrow & D_{2}^{p}\left(V^{*} U D_{1}^{q} U^{*} V\right) D_{2}^{r}\left(V^{*} x\right)=\mu\left(V^{*} x\right) \\
\Longleftrightarrow & D_{2}^{p}\left(\left(U^{*} V\right)^{*} D_{1}^{q} U^{*} V\right) D_{2}^{r} y=\mu y, y=V^{*} x \neq 0,
\end{aligned}
$$

while D_{2} and $\left(U^{*} V\right)^{*} D_{1}^{q} U^{*} V$ are positive semidefinite. We first prove the 'only if' part. Let B be diagonal such that first k diagonal entries are nonzero while all the rest are zero, i.e., let

$$
(B)_{i i}= \begin{cases}d_{i}>0 & \text { if } i \leq k \\ 0 & \text { if } i>k\end{cases}
$$

We also define diagonal matrix B^{\prime} as

$$
\left(B^{\prime}\right)_{i i}= \begin{cases}d_{i}^{-1}>0 & \text { if } i \leq k \\ 0 & \text { if } i>k\end{cases}
$$

Note that $\left(\left.B\right|_{\operatorname{Range}(B)}\right)^{-1}=\left.B^{\prime}\right|_{\operatorname{Range}(B)}$. If nonzero vector x satisfies $B^{p} A^{q} B^{r} x=\mu x$, since $\mu x \in$ Range (B) one can conclude that last $(n-k)$ entries of x are all zero, and there exists vector $y \in$ Range $(B) \backslash\{0\}$ such that $x=B^{\prime} y$. Then

$$
\begin{aligned}
& B^{p} A^{q} B^{r} x=\mu x \\
\Longrightarrow & B^{p} A^{q} B^{r} B^{\prime} y=\mu B^{\prime} y \\
\Longrightarrow & B^{p+1} A^{q} B^{r-1}\left(B B^{\prime}\right) y=\mu\left(B B^{\prime}\right) y \\
\Longrightarrow & B^{p+1} A^{q} B^{r-1} y=\mu y,
\end{aligned}
$$

which is the result we wanted. Proving converse is rather similar:

$$
\begin{aligned}
& B^{p+1} A^{q} B^{r-1} y=\mu y \\
\Longrightarrow & B^{\prime} B^{p+1} A^{q} B^{r-1} y=\mu B^{\prime} y .
\end{aligned}
$$

Since $B^{p+1} A^{q} B^{r-1} y=\mu y$ implies that $y \in \operatorname{Range}(B)$ and there exists $z \in \operatorname{Range}(B)$ such that $z=B y$ and we get

$$
\begin{aligned}
& B^{\prime} B^{p+1} A^{q} B^{r-1} y=\mu B^{\prime} y \\
\Longrightarrow & B^{\prime} B^{p+1} A^{q} B^{r-1} B z=\mu B^{\prime} B z \\
\Longrightarrow & B^{p} A^{q} B^{r} z=\mu z\left(\because\left(\left.B\right|_{\operatorname{Range}(B)}\right)^{-1}=\left.B^{\prime}\right|_{\operatorname{Range}(B)}\right),
\end{aligned}
$$

which completes the proof.
As an immediate consequence for any $m \geq 1$, eigenvalues of

$$
A^{m} B^{m}=(\sqrt{A})^{2 m}(\sqrt{B})^{2 m}=(\sqrt{A})^{m+m}(\sqrt{B})^{2 m}(\sqrt{A})^{m-m}
$$

are all real and nonnegative, since $(\sqrt{A})^{m}(\sqrt{B})^{2 m}(\sqrt{A})^{m}=\left((\sqrt{B})^{m}(\sqrt{A})^{m}\right)^{*}\left((\sqrt{B})^{m}(\sqrt{A})^{m}\right)$ thus positive semidefinite. Showing that $B^{m} A^{m}$ has only real nonnegative eigenvalues can be done in similar sense. Now we prove the case of $m=1$. Note that whenever μ is eigenvalue of $M, \bar{\mu}$ is eigenvalue of M^{*} (Perform the triangularization on M and take conjugate). We have following inequalities

$$
\begin{aligned}
\lambda(A B) & \leq \sqrt{\lambda\left((A B)^{*} A B\right)} \\
& =\sqrt{\lambda\left(B A^{2} B\right)} \\
& =\sqrt{\lambda\left(B^{2} A^{2}\right)} \\
& =\sqrt{\lambda\left(A^{2} B^{2}\right)}\left(\because A^{2} B^{2}=\left(B^{2} A^{2}\right)^{*} \text { and eigenvalues of } B^{2} A^{2} \text { are all real }\right)
\end{aligned}
$$

, thus one gets the proof of the case of $m=1$. Now Assume we have $\left[\lambda\left(A^{m-1} B^{m-1}\right)\right]^{\frac{1}{m-1}} \leq\left[\lambda\left(A^{m} B^{m}\right)\right]^{\frac{1}{m}}$. Let $\|\cdot\|$ be usual matrix norm, which is induced from euclidean norm on \mathbb{C}^{n}. Then following inequalities hold:

$$
\begin{aligned}
\lambda\left(A^{m} B^{m}\right) & =\lambda\left((\sqrt{B})^{m}(\sqrt{A})^{2 m}(\sqrt{B})^{m}\right) \\
& =\lambda\left((\sqrt{B})^{m-1}(\sqrt{A})^{2 m}(\sqrt{B})^{m+1}\right) \\
& \leq\left\|(\sqrt{B})^{m-1}(\sqrt{A})^{2 m}(\sqrt{B})^{m+1}\right\| \\
& \leq\left\|(\sqrt{B})^{m-1}(\sqrt{A})^{m-1}\right\|\left\|(\sqrt{B})^{m+1}(\sqrt{A})^{m+1}\right\| \\
& =\sqrt{\lambda\left(\left((\sqrt{B})^{m-1}(\sqrt{A})^{m-1}\right)^{*}(\sqrt{B})^{m-1}(\sqrt{A})^{m-1}\right)} \\
& \times \sqrt{\lambda\left(\left((\sqrt{B})^{m+1}(\sqrt{A})^{m+1}\right)^{*}(\sqrt{B})^{m+1}(\sqrt{A})^{m+1}\right)} \\
& =\sqrt{\lambda\left(A^{m-1} B^{m-1}\right) \lambda\left(A^{m+1} B^{m+1}\right)}
\end{aligned}
$$

Last two equalities become clear if one performs polar decomposition on

$$
(\sqrt{B})^{m-1}(\sqrt{A})^{m-1} \text { and }(\sqrt{B})^{m+1}(\sqrt{A})^{m+1}
$$

and we get

$$
\begin{aligned}
\lambda\left(A^{m+1} B^{m+1}\right) & \geq \frac{\lambda\left(A^{m} B^{m}\right)^{2}}{\lambda\left(A^{m-1} B^{m-1}\right)} \\
& \geq \frac{\lambda\left(A^{m} B^{m}\right)^{2}}{\lambda\left(A^{m} B^{m}\right)^{\frac{m-1}{m}}} \\
& =\lambda\left(A^{m} B^{m}\right)^{\frac{m+1}{m}}
\end{aligned}
$$

which is equivalent to

$$
\left[\lambda\left(A^{m} B^{m}\right)\right]^{\frac{1}{m}} \leq\left[\lambda\left(A^{m+1} B^{m+1}\right)\right]^{\frac{1}{m+1}}
$$

