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Problem. For any positive semideifinite A and B, prove that [λ(AmBm)]
1
m ≤ [λ(Am+1Bm+1)]

1
m+1 .

We prove useful lemma firstly and proceed by induction on m. Since A and B are both hermitian,
there exist unitary matrices U, V and diagonal matrices D1, D2 such that A = UD1U

∗, B = V D2V
∗.

Moreover, diagonal entries of D1 and D2 are nonnegative, thus
√
D1 and

√
D2 are well defined. Note

that from these definitions we may define
√
A,
√
B as

√
A = U

√
D1U

∗,
√
B = V

√
D2V

∗, too. We have
following lemma:

Lemma 1. for any µ ∈ C\{0} and p, q, r ∈ Z>0, µ is eigenvalue of BpAqBr if and only if µ is eigenvalue
of Bp+1AqBr−1.

Proof. Without loss of generality we may assume B is diagonal, since

BpAqBrx = µx

⇐⇒(V Dp
2V
∗)(UDq

1U
∗)(V Dr

2V
∗)x = µx

⇐⇒Dp
2(V ∗UDq

1U
∗V )Dr

2(V ∗x) = µ(V ∗x)

⇐⇒Dp
2((U∗V )∗Dq

1U
∗V )Dr

2y = µy, y = V ∗x 6= 0,

while D2 and (U∗V )∗Dq
1U
∗V are positive semidefinite. We first prove the ’only if’ part. Let B be diagonal

such that first k diagonal entries are nonzero while all the rest are zero, i.e., let

(B)ii =

{
di > 0 if i ≤ k
0 if i > k

.

We also define diagonal matrix B′ as

(B′)ii =

{
d−1i > 0 if i ≤ k
0 if i > k

.

Note that (B |Range(B))
−1 = B′ |Range(B). If nonzero vector x satisfies BpAqBrx = µx, since µx ∈

Range(B) one can conclude that last (n − k) entries of x are all zero, and there exists vector y ∈
Range(B) \ {0} such that x = B′y. Then

BpAqBrx = µx

⇐⇒BpAqBrB′y = µB′y

=⇒Bp+1AqBr−1(BB′)y = µ(BB′)y

=⇒Bp+1AqBr−1y = µy,

which is the result we wanted. Proving converse is rather similar:

Bp+1AqBr−1y = µy

=⇒B′Bp+1AqBr−1y = µB′y.
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Since Bp+1AqBr−1y = µy implies that y ∈ Range(B) and there exists z ∈ Range(B) such that z = By
and we get

B′Bp+1AqBr−1y = µB′y

=⇒B′Bp+1AqBr−1Bz = µB′Bz

=⇒BpAqBrz = µz (∵ (B |Range(B))
−1 = B′ |Range(B)),

which completes the proof.

As an immediate consequence for any m ≥ 1, eigenvalues of

AmBm = (
√
A)2m(

√
B)2m = (

√
A)m+m(

√
B)2m(

√
A)m−m

are all real and nonnegative, since (
√
A)m(

√
B)2m(

√
A)m = ((

√
B)m(

√
A)m)∗((

√
B)m(

√
A)m) thus pos-

itive semidefinite. Showing that BmAm has only real nonnegative eigenvalues can be done in similar
sense. Now we prove the case of m = 1. Note that whenever µ is eigenvalue of M , µ is eigenvalue of
M∗(Perform the triangularization on M and take conjugate). We have following inequalities

λ(AB) ≤
√
λ((AB)∗AB)

=
√
λ(BA2B)

=
√
λ(B2A2)

=
√
λ(A2B2) (∵ A2B2 = (B2A2)∗ and eigenvalues of B2A2 are all real )

, thus one gets the proof of the case of m = 1. Now Assume we have [λ(Am−1Bm−1)]
1

m−1 ≤ [λ(AmBm)]
1
m .

Let ‖ · ‖ be usual matrix norm, which is induced from euclidean norm on Cn. Then following inequalities
hold:

λ(AmBm) = λ((
√
B)m(

√
A)2m(

√
B)m)

= λ((
√
B)m−1(

√
A)2m(

√
B)m+1)

≤ ‖(
√
B)m−1(

√
A)2m(

√
B)m+1‖

≤ ‖(
√
B)m−1(

√
A)m−1‖‖(

√
B)m+1(

√
A)m+1‖

=

√
λ(((
√
B)m−1(

√
A)m−1)∗(

√
B)m−1(

√
A)m−1)

×
√
λ(((
√
B)m+1(

√
A)m+1)∗(

√
B)m+1(

√
A)m+1)

=
√
λ(Am−1Bm−1)λ(Am+1Bm+1)

Last two equalities become clear if one performs polar decomposition on

(
√
B)m−1(

√
A)m−1 and (

√
B)m+1(

√
A)m+1,

and we get

λ(Am+1Bm+1) ≥ λ(AmBm)2

λ(Am−1Bm−1)

≥ λ(AmBm)2

λ(AmBm)
m−1
m

= λ(AmBm)
m+1
m ,

which is equivalent to

[λ(AmBm)]
1
m ≤ [λ(Am+1Bm+1)]

1
m+1 .

2


