2021-02 Inscribed triangles

Hanpil Kang

March 14, 2021

Problem.

Show that for any triangle T and any Jordan curve C in the Euclidean plane, there exists a triangle inscribed in C which is similar to T.

Solution.

If we fix two vertices N, M of a triangle, other vertex L to make triangle ΔNML similar to T (with same vertices order and does not allow reflection) is unique, and T is continuous subject to N, and M. For some 2-dimensional transformation matrix R, T = R(N - M) + M.

Assume we found two triangles $\Delta N_0 M_0 L_0$, $\Delta N_1 M_1 L_1$ which are similar to T, such that N_0, N_1, M_0, M_1 is on the curve C, L_0 is in the inside of C, and L_1 is in the outside of the curve C. We can continuously move N_0 and M_0 to N_1 and M_1 , L_0 moves continuously to L_1 while crossing C.

To find $\Delta N_0 M_0 L_0$, take any point *P* in the inside of *C*, and find the maximum possible disk centered in *C*, and do not intersect with the outside of *C*. such disk will intersect with *C* with a point N_0 . We can draw a triangle $\Delta N_0 M L$, inscribed in the disk, which is similar to *T*. We will also assume \overline{ML} as the longest side of the triangle.

By rotating $\Delta N_0 ML$ with center N_0 continuously, while either one of M or L will meet with C. (If not, trace of M will form closed curve D, which is in the inside of C, since M is in the inside of C. However N_0 , which on the curve C, should be in the inside of D, since N_0 is the center of rotation, which leads to contradiction.) Without lost of generality, let's assume M met with C. M and L can be chosen as M_0 and L_0 . N_0 and M_0 lies on C, and L_0 is in the inside of C.

To find $\Delta N_1 M_1 L_1$, let's choose two furthest points of C as N_1 and M_1 , and choose L_1 such that $\Delta N_1 M_1 L_1$ is similar to T. We have set \overline{ML} as the longest side of the triangle, so $\overline{M_1 L_1} \geq \overline{N_1 M_1}$, and L_1 should be in the outside of C or lie on C.

If L_0 or L_1 lies on C, such triangle $\Delta N_0 M_0 L_0$ or $\Delta N_1 M_1 L_1$ will complete the proof. Otherwise, we can continuously move $\Delta N_0 M_0 L_0$ from $\Delta N_1 M_1 L_1$ to find the triangle which L lies on C. Technically, let's denote parametrization of C as φ . $(\varphi : [0,1] \to \mathbb{R}^2, \varphi)$ is continuous, $\varphi(0) = \varphi(1)$, and restriction of φ to [0,1) is injective.) Let's define n_0, n_1, m_0, m_1 to be reals which meets $N_0 = \varphi(n_0), N_1 = \varphi(n_1), M_0 = \varphi(m_0), M_1 = \varphi(m_1).$

For $t \in [0,1]$, we can denote move of L using following parametrization: $N_t = \varphi(tn_1 + (1-t)n_0), M_t = \varphi(tn_1 + (1-t)n_0), L_t = R(N_t - M_t) + M_t. L_t$ is continuous subject to N_t and M_t , also N_t and M_t is subject to t. So L_t is continuous subject to T. This means L_t is parametrization of arc connecting L_0 and L_1 . If L_0 is in the inside of C, and L_1 is in the outside of C, which is well-defined by Jordan Curve Theorem, there must be $v \in (0, 1)$ such that L_v is on the curve C. (We can take supremum of t such that L_t is in the inside of the C.) $\Delta N_v M_v L_v$ is triangle which inscribed in C, which is also similar to T. \Box