POW2020-24

Sunghun Ko

December 2020

Problem. Prove that either R or $F_{m}-R$ is a Fibonacci number.
We begin with mentioning two properties of Fibonacci sequence.
Lemma 1. For every $n, m>0, F_{n+m}=F_{m} F_{n+1}+F_{m-1} F_{n}$.
Proof.

$$
\begin{aligned}
F_{n+m} & =F_{n+m-1}+F_{n+m-2} \\
& =\left(F_{n+m-2}+F_{n-m-3}\right)+F_{n+m-2} \\
& =2 F_{n+m-2}+F_{n+m-3} \\
& =2\left(F_{n+m-3}+F_{n+m-4}\right)+F_{n+m-3} \\
& =3 F_{n+m-3}+2 F_{n+m-4} \\
& =\cdots \\
& =F_{m} F_{n+1}+F_{m-1} F_{n}
\end{aligned}
$$

Lemma 2. For every $m>n \geq 0, F_{m-n}=(-1)^{n-2} F_{n-1} F_{m}+(-1)^{n-1} F_{n} F_{m-1}$. Proof.

$$
\begin{aligned}
F_{m-n} & =F_{m-n+2}-F_{m-n+1} \\
& =(-1)^{1-1} F_{1} F_{m-n+2}+(-1)^{1} F_{2} F_{m-n+1} \\
& =(-1)^{1-1} F_{1} F_{m+n-2}-(-1)^{1} F_{2}\left(F_{m-n+3}-F_{m-n+2}\right) \\
& =(-1)^{2-1} F_{2} F_{m-n+3}+(-1)^{2} F_{3} F_{m-n+2} \\
& =(-1)^{2-1} F_{2} F_{m-n+3}+(-1)^{2} F_{3}\left(F_{m-n+4}-F_{m-n+3}\right) \\
& =\cdots \\
& =(-1)^{n-2} F_{n-1} F_{m-n+(n-1)+1}+(-1)^{n-1} F_{n} F_{m-n+(n-1)} \\
& =(-1)^{n-2} F_{n-1} F_{m}+(-1)^{n-1} F_{n} F_{m-1}
\end{aligned}
$$

Now, let's assume $n=k m+r$ for some integer k and $0 \leq r<m$. Then, by
lemma 1, we have

$$
\begin{aligned}
F_{n} & =F_{k m+r} \\
& =F_{m} F_{(k-1) m+r+1}+F_{m-1} F_{(k-1) m+r} \\
& \equiv F_{m-1} F_{(k-1) m+r} \quad\left(\bmod F_{m}\right) \\
& \equiv F_{m-1}^{2} F_{(k-2) m+r} \quad\left(\bmod F_{m}\right) \\
& \equiv \cdots \\
& \equiv F_{m-1}^{k} F_{r} \quad\left(\bmod F_{m}\right)
\end{aligned}
$$

Also, by lemma 2, one can deduce that

$$
\begin{aligned}
1=F_{m-(m-2)} & =(-1)^{m-2-2} F_{m-3} F_{m}+(-1)^{m-2-1} F_{m-2} F_{m-1} \\
& \equiv(-1)^{m-3}\left(F_{m}-F_{m-1}\right) F_{m-1} \quad\left(\bmod F_{m}\right) \\
& \equiv(-1)^{m-2} F_{m-1}^{2} \quad\left(\bmod F_{m}\right)
\end{aligned}
$$

Thus $F_{m-1}^{2} \equiv(-1)^{m}\left(\bmod F_{m}\right)$ and we get

$$
\begin{aligned}
F_{n} & \equiv F_{m-1}^{k} F_{r}\left(\bmod F_{m}\right) \\
& \equiv \begin{cases}\left((-1)^{m}\right)^{\lfloor k / 2\rfloor} F_{m-1} F_{r} & \left(\bmod F_{m}\right) \\
F_{r}\left(\bmod F_{m}\right) & \text { if } \text { is odd }\end{cases}
\end{aligned}
$$

Again, by lemma 2,

$$
F_{m-r}=(-1)^{r-2} F_{r-1} F_{m}+(-1)^{r-1} F_{r} F_{m-1} \equiv(-1)^{r-1} F_{r} F_{m-1} \quad\left(\bmod F_{m}\right)
$$

and we can conclude that $F_{n} \equiv F_{r}$ or $\pm F_{m-r}$, which completes the proof.

