Problem of the Week

2020-\#22

Problem. Let S be the unit sphere in R^{n}, centered at the origin, and $P_{1} P_{2} \ldots P_{n+1}$ a regular simplex inscribed in S. Prove that for a point P inside S,

$$
\sum_{i=1}^{n+1} P P_{i}^{4}
$$

depends only on the distance $O P$ (and n).

Proof.

Claim. Centroid of the simplex is origin O.
Let the Centroid of the simplex be G. For each distinct i and $j, P_{i} P_{k}=P_{j} P_{k}$ for any k distinct from i, j, so P_{k} lie on perpendicular bisector of $P_{i} P_{j}$. Thus, reflection by the perpendicular bisector (plane) of $P_{i} P_{j}$ act on set $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}+1}\right\}$ as $\left(P_{i} P_{j}\right)$. Since centroid is not affected by changing indices, reflection by the bisector of $P_{i} P_{j}$ fixes G. Therefore, G is on bisector of $P_{i} P_{j}$, so $G P_{i}=G P_{j}$. Because this holds for arbitrary i and j, G is equidistant from P_{i}, i.e. it is center of the n-circumsphere. Since ($n+1$) points uniquely decides its n-circumsphere and the simplex is inscribed in S, G is center of S.

Let r be the distance $O P$, and θ_{i} be angle $<P O P_{i}$. Then,

$$
\begin{gathered}
P P_{i}^{2}=\left|\overrightarrow{O P}_{i}-\overrightarrow{O P}\right|^{2}=|\overrightarrow{O P}|^{2}+|\overrightarrow{O P}|^{2}-2 \overrightarrow{O P} \\
P_{i} \circ \overrightarrow{O P}=1+r^{2}-2 r \cos \theta_{i} \\
=\left(1+r^{2}\right)^{2}-4 r\left(1+r^{2}\right) \cos \theta_{i}+4 r^{2} \cos ^{2} \theta_{i} .
\end{gathered}
$$

Enough to show that $\sum_{i=1}^{n+1} \cos \theta_{i}, \sum_{i=1}^{n+1} \cos ^{2}\left(\theta_{i}\right)$ depends only on n .
Let $\alpha_{i}=\overrightarrow{O P}_{i}, \quad v=\overrightarrow{O P}$. Then, $\quad \cos \theta_{i}=1 / r \alpha_{i} \circ v$.
Since O is centroid of the simplex, we can obtain the following.

$$
\sum_{i=1}^{n+1} \alpha_{i}=0 \Rightarrow \sum_{i=1}^{n+1} \alpha_{i} \circ v=0
$$

As r is fixed, this implies $\quad \sum_{i=1}^{n+1} \cos \theta_{i}=0$.
Observe that regular ($\mathrm{n}+1$)-simplex spans on n-dimension. Clearly, $\alpha_{i}-\alpha_{n+1}$ for $1 \leq i \leq n$ is independent, and these spans the whole n-dimensional space.

Hence, we can parameterize v, i.e. $v=\sum_{i=1}^{n} x_{i}\left(\alpha_{i}-\alpha_{n+1}\right)$. Set $x_{n+1}=-\sum_{i=1}^{n} x_{i}$ so that $v=\sum_{i=1}^{n+1} x_{i} \alpha_{i}$.

Also, triangle $O P_{i} P_{j}$ is congruent for any i, j because $P_{i} P_{j}$ is constant and $O P_{i}=1$. Using this, we obtain

$$
\alpha_{i} \circ \alpha_{j}=\cos \phi(i \neq j), \quad \alpha_{i} \circ \alpha_{i}=1 .
$$

Because $\sum_{i=1}^{n+1} \alpha_{1} \circ \alpha_{i}=0$ holds, $\cos \phi=-1 / n$. Now, we can calculate the following.

$$
\sum_{i=1}^{n+1}\left(\alpha_{i} \circ v\right)^{2}=\sum_{i=1}^{n+1}\left[\sum_{j=1}^{n+1} x_{j} \alpha_{i} \circ \alpha_{j}\right]^{2}=\sum_{i=1}^{n+1}\left[(1+1 / n) x_{i}-1 / n \sum_{j=1}^{n+1} x_{j}\right]^{2}=\frac{(n+1)^{2}}{n^{2}} \sum_{i=1}^{n+1} x_{i}^{2}
$$

Where the last equality holds as sum of x_{i} is 0 by definition of x_{n+1}.
Plus, we can calculate the following as well.

$$
r^{2}=v \circ v=\sum_{i=1}^{n+1} \sum_{j=1}^{n+1}\left(x_{i} \alpha_{i}\right) \circ\left(x_{j} \alpha_{j}\right)=\sum_{i=1}^{n+1} x_{i} \sum_{j=1}^{n+1} x_{j} \alpha_{i} \circ \alpha_{j}=\sum_{i=1}^{n+1} x_{i}\left[(1+1 / n) x_{i}-1 / n \sum_{j=1}^{n+1} x_{j}\right]=\frac{(n+1)}{n} \sum_{i=1}^{n+1} x_{i}^{2}
$$

Therefore, by comparing the two we get

$$
\sum_{i=1}^{n+1}\left(\alpha_{i} \circ v\right)^{2}=\frac{(n+1)}{n} r^{2},
$$

which implies that $\sum_{i=1}^{n+1} \cos ^{2} \theta_{i}=(n+1) / n$, depending only on n.

