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Question.

Let n be a positive integer. Determine all continuous functions f : [0, 1]→ R such that

f(x1) + f(x2) + · · ·+ f(xn) = 1 (1)

for all x1, x2, . . . , xn ∈ [0, 1] satisfying x1 + x2 + · · ·+ xn = 1.

Solution.

Let us say f is n-nice if f satisfies the given property with positive integer n.

[0] If f(0) = 0 and f is n-nice, then f is also m-nice for 1 ≤ m < n.

Suppose that f(0) = 0, f is n-nice, and 1 ≤ m < n. Let y1, y2, . . . , ym ∈ [0, 1] satisfying y1 + y2 + · · ·+ ym = 1.

Then by letting x1 = y1, x2 = y2, . . . , xm = ym and xm+1 = · · · = xn = 0, we have x1 +x2 + · · ·+xn = 1, therefore

f(y1) + f(y2) + · · ·+ f(ym) = f(x1) + f(x2) + · · ·+ f(xn) = 1 holds. So we can conclude that f is m-nice.

[1] The case when n = 1

If n = 1 and f is 1-nice, then clearly f can be all continuous functions, with f(1) = 1.

[2] The case when n = 2

If n = 2, then f is 2-nice if and only if it satisfies the following:

f(x) + f(1− x) = 1 ∀x ∈ [0, 1] (2)

Let g : [− 1
2 ,

1
2 ]→ R as g(x) = f(x + 1

2 )− 1
2 . Then we have that

f(x) + f(1− x) = 1 ∀x ∈ [0, 1]⇐⇒

g(−x) = f(−x +
1

2
)− 1

2
=

1

2
− (1− f(−x +

1

2
)) =

1

2
− f(x +

1

2
) = −g(x) ∀x ∈ [−1

2
,

1

2
]

Therefore (2) is equivalent with that g is an odd function, and f(x) = g(x− 1
2 ) + 1

2 holds.

∴ f(x) + f(1− x) = 1 ∀x ∈ [0, 1]⇐⇒ f(x) = g(x− 1

2
) +

1

2
for odd function g : [−1

2
,

1

2
]→ R

[3] The case when n ≥ 3 and f(0) = 0

Suppose that f is n-nice, and n ≥ 3, f(0) = 0. In this case, I’ll prove that f(x) = x ∀x ∈ [0, 1]. Suppose that

f(c) 6= c for some c ∈ [0, 1]. Let h(x) = |f(x) − x| for x ∈ [0, 1]. Then h is continuous function, and h is not

identically 0. By [0], we have f is 2-nice, so f satisfies the equation (2) and h(1 − x) = |f(1 − x) − (1 − x)| =

|(1− f(x))− (1− x)| = |x− f(x)| = h(x) holds for all x ∈ [0, 1].

From that h is nonnegative continuous function which is not identically 0, we can find c ∈ [0, 1] which attains

maximum value of h. Also, from that h(1−x) = h(x) ∀x ∈ [0, 1], we may assume that c ∈ [0, 1
2 ]. Note that h(c) > 0.
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Again, by [0], we have f is 3-nice, so f(c) +f(c) +f(1−2c) = 1 holds as c+ c+ (1−2c) = 1. Therefore, we have

f(c) + f(c) + f(1− 2c) = 1 = c + c + (1− 2c) , so

(f(1− 2c)− (1− 2c)) = −2(f(c)− c) , h(1− 2c) = 2h(c) > h(c)

This contradicts to the maximality of h(c), so we obtain that f(x) = x ∀x ∈ [0, 1].

[4] The case when n ≥ 3

Suppose that f is n-nice, and n ≥ 3. Take f̂(x) = f(x)− k + nkx, where k = f(0). Then for given x1, x2, . . . ,

xn ∈ [0, 1] satisfying x1 + x2 + · · · + xn = 1, f̂(x1) + f̂(x2) + · · · + f̂(xn) = (f(x1) + · · · + f(xn)) − nk + nk(x1 +

x2 + · · ·+ xn) = 1, so f̂ satisfies the given condition. Moreover, f̂(0) = f(0)− k = 0 holds, so by referring [3], we

have that f̂(x) = x ∀x ∈ [0, 1]. So, f(x)− k + nkx = x holds and we can conclude that f(x) = (1− nk)x + k, for

all x ∈ [0, 1].

Conversely, suppose f(x) = (1− nk)x + k holds for some constant k. Then for x1, x2, . . . , xn ∈ [0, 1] satisfying

x1 + x2 + · · ·+ xn = 1, we have f(x1) + f(x2) + · · ·+ f(xn) = (1− nk)(x1 + · · ·+ xn) + nk = 1. So f is n-nice.

So, f is n-nice if and only if f(x) = (1− nk)x + k, for some constant k.

By summarizing [1], [2], and [4], we have that

f(x) is n-nice⇐⇒


f(x) is continuous function with f(1) = 1, when n = 1

f(x) = g(x− 1
2 ) + 1

2 for odd continuous function g : [− 1
2 ,

1
2 ]→ R, when n = 2

f(x) = (1− nk)x + k for some constant k ∈ R, when n ≥ 3
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