Solution for POW2020-19

20200129 Yuil Kim

Date : 02 November 2020

Question.

Let \(n \) be a positive integer. Determine all continuous functions \(f : [0, 1] \to \mathbb{R} \) such that

\[
\sum_{i=1}^{n} f(x_i) = 1
\]

for all \(x_1, x_2, \ldots, x_n \in [0, 1] \) satisfying \(x_1 + x_2 + \cdots + x_n = 1 \).

Solution.

Let us say \(f \) is \(n \)-nice if \(f \) satisfies the given property with positive integer \(n \).

[0] If \(f(0) = 0 \) and \(f \) is \(n \)-nice, then \(f \) is also \(m \)-nice for \(1 \leq m < n \).

Suppose that \(f(0) = 0 \), \(f \) is \(n \)-nice, and \(1 \leq m < n \). Let \(y_1, y_2, \ldots, y_m \in [0, 1] \) satisfying \(y_1 + y_2 + \cdots + y_m = 1 \). Then by letting \(x_1 = y_1, x_2 = y_2, \ldots, x_m = y_m \) and \(x_{m+1} = \cdots = x_n = 0 \), we have \(x_1 + x_2 + \cdots + x_n = 1 \), therefore \(f(y_1) + f(y_2) + \cdots + f(y_m) = f(x_1) + f(x_2) + \cdots + f(x_n) = 1 \) holds. So we can conclude that \(f \) is \(m \)-nice.

[1] The case when \(n = 1 \)

If \(n = 1 \) and \(f \) is \(1 \)-nice, then clearly \(f \) can be all continuous functions, with \(f(1) = 1 \).

[2] The case when \(n = 2 \)

If \(n = 2 \), then \(f \) is \(2 \)-nice if and only if it satisfies the following:

\[
f(x) + f(1-x) = 1 \quad \forall x \in [0, 1]
\]

Let \(g : [-\frac{1}{2}, \frac{1}{2}] \to \mathbb{R} \) as \(g(x) = f(x + \frac{1}{2}) - \frac{1}{2} \). Then we have that

\[
f(x) + f(1-x) = 1 \quad \forall x \in [0, 1] \iff g(-x) = f(-x + \frac{1}{2}) - \frac{1}{2} - (1 - f(-x + \frac{1}{2})) = \frac{1}{2} - f(x + \frac{1}{2}) = -g(x) \quad \forall x \in [-\frac{1}{2}, \frac{1}{2}]
\]

Therefore (2) is equivalent with that \(g \) is an odd function, and \(f(x) = g(x - \frac{1}{2}) + \frac{1}{2} \) holds.

\[
\therefore f(x) + f(1-x) = 1 \quad \forall x \in [0, 1] \iff f(x) = g(x - \frac{1}{2}) + \frac{1}{2} \quad \text{for odd function } g : [-\frac{1}{2}, \frac{1}{2}] \to \mathbb{R}
\]

[3] The case when \(n \geq 3 \) and \(f(0) = 0 \)

Suppose that \(f \) is \(n \)-nice, and \(n \geq 3 \), \(f(0) = 0 \). In this case, I’ll prove that \(f(x) = x \quad \forall x \in [0, 1] \). Suppose that \(f(c) \neq c \) for some \(c \in [0, 1] \). Let \(h(x) = |f(x) - x| \) for \(x \in [0, 1] \). Then \(h \) is continuous function, and \(h \) is not identically 0. By [0], we have \(f \) is \(2 \)-nice, so \(f \) satisfies the equation (2) and \(h(1-x) = |f(1-x) - (1-x)| = |(1 - f(x)) - (1 - x)| = |x - f(x)| = h(x) \) holds for all \(x \in [0, 1] \).

From that \(h \) is nonnegative continuous function which is not identically 0, we can find \(c \in [0, 1] \) which attains maximum value of \(h \). Also, from that \(h(1-x) = h(x) \quad \forall x \in [0, 1] \), we may assume that \(c \in [0, \frac{1}{2}] \). Note that \(h(c) > 0 \).
Again, by [0], we have $f(c) + f(c) + f(1 - 2c) = 1$ holds as $c + c + (1 - 2c) = 1$. Therefore, we have
\[
f(c) + f(c) + f(1 - 2c) = 1 = c + c + (1 - 2c),\]
so
\[
(f(1 - 2c) - (1 - 2c)) = -2(f(c) - c), \quad h(1 - 2c) = 2h(c) > h(c)
\]
This contradicts to the maximality of $h(c)$, so we obtain that $f(x) = x \forall x \in [0, 1]$.

[4] The case when $n \geq 3$

Suppose that f is n-nice, and $n \geq 3$. Take $\hat{f}(x) = f(x) - k + nkx$, where $k = f(0)$. Then for given $x_1, x_2, \ldots, x_n \in [0, 1]$ satisfying $x_1 + x_2 + \cdots + x_n = 1$, $\hat{f}(x_1) + \hat{f}(x_2) + \cdots + \hat{f}(x_n) = (f(x_1) + \cdots + f(x_n)) - nk + nk(x_1 + x_2 + \cdots + x_n) = 1$, so \hat{f} satisfies the given condition. Moreover, $\hat{f}(0) = f(0) - k = 0$ holds, so by referring [3], we have that $\hat{f}(x) = x \forall x \in [0, 1]$. So, $f(x) - k + nkx = x$ holds and we can conclude that $f(x) = (1 - nk)x + k$, for all $x \in [0, 1]$.

Conversely, suppose $f(x) = (1 - nk)x + k$ holds for some constant k. Then for $x_1, x_2, \ldots, x_n \in [0, 1]$ satisfying $x_1 + x_2 + \cdots + x_n = 1$, we have $f(x_1) + f(x_2) + \cdots + f(x_n) = (1 - nk)(x_1 + \cdots + x_n) + nk = 1$. So f is n-nice.

So, f is n-nice if and only if $f(x) = (1 - nk)x + k$, for some constant k.

By summarizing [1], [2], and [4], we have that

\[
f(x) \text{ is } n\text{-nice } \iff \begin{cases}
 f(x) \text{ is continuous function with } f(1) = 1, \text{ when } n = 1 \\
 f(x) = g(x - \frac{1}{2}) + \frac{1}{2} \text{ for odd continuous function } g : [-\frac{1}{2}, \frac{1}{2}] \to \mathbb{R}, \text{ when } n = 2 \\
 f(x) = (1 - nk)x + k \text{ for some constant } k \in \mathbb{R}, \text{ when } n \geq 3
\end{cases}
\]