Solution for POW2020-19

20200129 Yuil Kim

Date : 02 November 2020

Question.

Let n be a positive integer. Determine all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)=1 \tag{1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$ satisfying $x_{1}+x_{2}+\cdots+x_{n}=1$.

Solution.

Let us say f is n-nice if f satisfies the given property with positive integer n.
[0] If $f(0)=0$ and f is n-nice, then f is also m-nice for $1 \leq m<n$.
Suppose that $f(0)=0, f$ is n-nice, and $1 \leq m<n$. Let $y_{1}, y_{2}, \ldots, y_{m} \in[0,1]$ satisfying $y_{1}+y_{2}+\cdots+y_{m}=1$. Then by letting $x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{m}=y_{m}$ and $x_{m+1}=\cdots=x_{n}=0$, we have $x_{1}+x_{2}+\cdots+x_{n}=1$, therefore $f\left(y_{1}\right)+f\left(y_{2}\right)+\cdots+f\left(y_{m}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)=1$ holds. So we can conclude that f is m-nice.
[1] The case when $n=1$
If $n=1$ and f is 1 -nice, then clearly f can be all continuous functions, with $f(1)=1$.
[2] The case when $n=2$
If $n=2$, then f is 2 -nice if and only if it satisfies the following:

$$
\begin{equation*}
f(x)+f(1-x)=1 \forall x \in[0,1] \tag{2}
\end{equation*}
$$

Let $g:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbb{R}$ as $g(x)=f\left(x+\frac{1}{2}\right)-\frac{1}{2}$. Then we have that

$$
\begin{aligned}
& f(x)+f(1-x)=1 \forall x \in[0,1] \Longleftrightarrow \\
& \quad g(-x)=f\left(-x+\frac{1}{2}\right)-\frac{1}{2}=\frac{1}{2}-\left(1-f\left(-x+\frac{1}{2}\right)\right)=\frac{1}{2}-f\left(x+\frac{1}{2}\right)=-g(x) \forall x \in\left[-\frac{1}{2}, \frac{1}{2}\right]
\end{aligned}
$$

Therefore (2) is equivalent with that g is an odd function, and $f(x)=g\left(x-\frac{1}{2}\right)+\frac{1}{2}$ holds.

$$
\therefore f(x)+f(1-x)=1 \forall x \in[0,1] \Longleftrightarrow f(x)=g\left(x-\frac{1}{2}\right)+\frac{1}{2} \text { for odd function } g:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbb{R}
$$

[3] The case when $n \geq 3$ and $f(0)=0$
Suppose that f is n-nice, and $n \geq 3, f(0)=0$. In this case, I'll prove that $f(x)=x \forall x \in[0,1]$. Suppose that $f(c) \neq c$ for some $c \in[0,1]$. Let $h(x)=|f(x)-x|$ for $x \in[0,1]$. Then h is continuous function, and h is not identically 0 . By [0], we have f is 2-nice, so f satisfies the equation (2) and $h(1-x)=|f(1-x)-(1-x)|=$ $|(1-f(x))-(1-x)|=|x-f(x)|=h(x)$ holds for all $x \in[0,1]$.

From that h is nonnegative continuous function which is not identically 0 , we can find $c \in[0,1]$ which attains maximum value of h. Also, from that $h(1-x)=h(x) \forall x \in[0,1]$, we may assume that $c \in\left[0, \frac{1}{2}\right]$. Note that $h(c)>0$.

Again, by [0], we have f is 3-nice, so $f(c)+f(c)+f(1-2 c)=1$ holds as $c+c+(1-2 c)=1$. Therefore, we have

$$
\begin{aligned}
& f(c)+f(c)+f(1-2 c)=1=c+c+(1-2 c), \text { so } \\
& (f(1-2 c)-(1-2 c))=-2(f(c)-c), h(1-2 c)=2 h(c)>h(c)
\end{aligned}
$$

This contradicts to the maximality of $h(c)$, so we obtain that $f(x)=x \forall x \in[0,1]$.
[4] The case when $n \geq 3$
Suppose that f is n-nice, and $n \geq 3$. Take $\hat{f}(x)=f(x)-k+n k x$, where $k=f(0)$. Then for given x_{1}, x_{2}, \ldots, $x_{n} \in[0,1]$ satisfying $x_{1}+x_{2}+\cdots+x_{n}=1, \hat{f}\left(x_{1}\right)+\hat{f}\left(x_{2}\right)+\cdots+\hat{f}\left(x_{n}\right)=\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right)-n k+n k\left(x_{1}+\right.$ $\left.x_{2}+\cdots+x_{n}\right)=1$, so \hat{f} satisfies the given condition. Moreover, $\hat{f}(0)=f(0)-k=0$ holds, so by referring [3], we have that $\hat{f}(x)=x \forall x \in[0,1]$. So, $f(x)-k+n k x=x$ holds and we can conclude that $f(x)=(1-n k) x+k$, for all $x \in[0,1]$.

Conversely, suppose $f(x)=(1-n k) x+k$ holds for some constant k. Then for $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$ satisfying $x_{1}+x_{2}+\cdots+x_{n}=1$, we have $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)=(1-n k)\left(x_{1}+\cdots+x_{n}\right)+n k=1$. So f is n-nice.

So, f is n-nice if and only if $f(x)=(1-n k) x+k$, for some constant k.
By summarizing [1], [2], and [4], we have that

$$
f(x) \text { is } n \text {-nice } \Longleftrightarrow\left\{\begin{array}{l}
f(x) \text { is continuous function with } f(1)=1, \text { when } n=1 \\
f(x)=g\left(x-\frac{1}{2}\right)+\frac{1}{2} \text { for odd continuous function } g:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbb{R}, \text { when } n=2 \\
f(x)=(1-n k) x+k \text { for some constant } k \in \mathbb{R}, \text { when } n \geq 3
\end{array}\right.
$$

