2020-18

Hyunjun Gil

October 13, 2020

First, I will show that This process should be terminated and then show that this process should be terminated in at most $F_{n+1}-1$ steps, where F_{n} is fibonacci number.

Let $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ denotes the initial state of the deck where x_{i} denotes the i th cards from the top.If $n=1$, it is trivial. Assume that the process terminates for all integer less than n. If $x_{n}=n$, then this card cannot be moved since any other number is smaller than n. Thus, in this case it is same with the process with $n-1$ cards so the process will be terminated by induction hyphothesis. Suppose $x_{n}=k \neq=n$. If n is not placed on the top during the process, k cannot be moved from the bottom, so it is same with the proecess with $n-1$ cards and thus it will be terminated. Otherwise, if n is placed on the top, k and n exchanges their position and remaining process will be same with the process with $n-1$ cards. Thus the process must be terminated for all n.

Let $f(n, k)$ be the maximum number of shuffle of the process with the deck, which has k cards of 1 and distinct $n-k$ cards in $\{2,3, \cdots, n\}$. Then trivially $f(1,1)=0, \forall m \geq n f(n, m)=0$. I will show that $f(n, k) \leq F_{n-k+2}-1$ by using induction. Let S be arbitrary initial state of this deck. Assume the deck contains n. Suppose n is placed on the bottom in S. Then by similar argument used in above, the maximum shuffle number in this case is $f(n-1, k) \leq$ $F_{n-k+1}-1 \leq F_{n-k+2}-1$. If the bottom of S is 1 , the maximum shuffle number in this case is achieved when n is placed on the top after $f(n-1, k)$ (by regarding n as 1) shuffle, and then shuffle once again to exchange the position between n and 1. The total shuffle is $f(n-1, k)+1 \leq F_{n-k+1} \leq F_{n-k+2}-1$. Thus, we may assume that the bottom of the S is neither 1 nor n. Then the maximum shuffle number in this case is achieved when n is placed on the top after $f(n-1, k+1)$ (by regarding n as 1) shuffles, shuffle once again to place n to the bottom, and then shuffle until the process terminates. The maximum number of shuffle required in the last step is $f(n-1, k)$. Then the total number of shuffle is $f(n-1, k+1)+f(n-1, k)+1 \leq F_{n-k}+F_{n-k+1}-1=F_{n-k+2}-1$. If S does not contains n, the card in the bottom cannot be moved. Thus, in this case the maximum number of shuffle is $f(n-1, k)$ which is obviously smaller than the previous cases. $\therefore f(n, 1) \leq F_{n+1}-1$, which corresponds to our problem.

Then

$$
F_{n+1}-1=\frac{\phi^{n+1}-\psi^{n+1}}{\sqrt{5}}-1 \leq \frac{\phi^{n+1}}{\sqrt{5}} \leq \phi^{n} \leq(1.7)^{n}
$$

where $\phi=1.618 \cdots$ and $\psi=-0.618 \cdots$.

Below results are the maximum number of shuffle with n cards and initial state of the deck when the maxima is acheived.

If $n=4$, the maximum number of shuffle is 4 , and (2413), (3142)
If $n=5$, the maximum number of shuffle is 7 , and (31452)
If $n=6$, the maximum number of shuffle is 10 , and (365142), (456213), (415263), (564132)
If $n=7$, the maximum number of shuffle is 16 , and (3146752), (47612153)
If $n=8$, the maximum number of shuffle is 22 , and (61578324)
If $n=9$, the maximum number of shuffle is 30 , and (615972834)
If $n=10$, the maximum number of shuffle is 38 , and ($5,9,1,8,6,2,10,4,7,3$)
If $n=11$, the maximum number of shuffle is 51 , and $(4,9,11,6,10,7,8,2,1,3,5)$
If $n=12$, the maximum number of shuffle is 65 and $(2,6,1,10,11,8,12,3,4,7,9,5)$

