POW 2020-16

2016 \qquad Chae Jiseok

September 29, 2020

We use * to denote conjugate transpose. Let two integers n and k be given so that $1 \leqslant k \leqslant n$. For an $\mathfrak{n} \times \mathfrak{n}$ Hermitian matrix A let f denote the function given in the problem, that is, let

$$
f(A)=\lambda_{1}(A)+\cdots+\lambda_{k}(A)
$$

We make a few claims.
Claim 1. For an $n \times n$ Hermitian matrix A, let u_{1}, \cdots, u_{n} be unit norm eigenvectors correspoding to $\lambda_{1}(A), \cdots, \lambda_{n}(\mathcal{A})$, respectively. For any $j \in\{1, \cdots, n\}$, let v and w be any unit vectors such that $v \in \operatorname{span}\left\{\mathfrak{u}_{1}, \cdots, u_{j}\right\}$ and $w \in \operatorname{span}\left\{u_{j}, \cdots, u_{n}\right\}$. Then $v^{*} A v$ and $w^{*} A w$ are real numbers satisfying

$$
v^{*} A v \geqslant \lambda_{j}(A) \quad \text { and } \quad w^{*} A w \leqslant \lambda_{j}(A)
$$

Proof. Because $\left\{u_{1}, \cdots, u_{n}\right\}$ forms an orthonormal basis for \mathbb{C}^{n}, there exists complex numbers $\alpha_{1}, \cdots, \alpha_{j}$ and $\beta_{j}, \cdots, \beta_{n}$ satisfying $v=\sum_{i=1}^{j} \alpha_{i} u_{i}$ and $w=\sum_{i=j}^{n} \beta_{i} u_{i}$. By the same reason, $u_{i}^{*} u_{j}=0$ whenever $i \neq j$, and $u_{i}^{*} u_{i}=1$ for all $i \in\{1, \cdots, n\}$. So we have $1=\|v\|^{2}=\sum_{i=1}^{j}\left|\alpha_{i}\right|^{2}$ and thus

$$
\begin{aligned}
v^{*} A v=v^{*} \sum_{i=1}^{j} A \alpha_{i} u_{i} & =v^{*} \sum_{i=1}^{j} \lambda_{i}(A) \alpha_{i} u_{i} \\
& =\left(\sum_{i=1}^{j} \overline{\alpha_{i}} u_{i}^{*}\right)\left(\sum_{i=1}^{j} \lambda_{i}(A) \alpha_{i} u_{i}\right) \\
& =\sum_{i=1}^{j} \lambda_{i}(A)\left|\alpha_{i}\right|^{2} u_{i}^{*} u_{i} \\
& \geqslant \lambda_{j}(A) \sum_{i=1}^{j}\left|\alpha_{i}\right|^{2} \\
& =\lambda_{j}(A) .
\end{aligned}
$$

Similarly we have $1=\|w\|^{2}=\sum_{i=j}^{n}\left|\beta_{i}\right|^{2}$ and thus

$$
\begin{aligned}
w^{*} A w=w^{*} \sum_{i=j}^{n} A \beta_{i} u_{i} & =w^{*} \sum_{i=j}^{n} \lambda_{i}(A) \beta_{i} u_{i} \\
& =\left(\sum_{i=j}^{n} \overline{\beta_{i}} u_{i}^{*}\right)\left(\sum_{i=j}^{n} \lambda_{i}(A) \beta_{i} u_{i}\right) \\
& =\sum_{i=j}^{n} \lambda_{i}(A)\left|\beta_{i}\right|^{2} u_{i}^{*} u_{i} \\
& \leqslant \lambda_{j}(A) \sum_{i=j}^{n}\left|\beta_{i}\right|^{2} \\
& =\lambda_{j}(A) .
\end{aligned}
$$

Therefore we have the desired inequalities.

Claim 2. Let A be an $n \times n$ Hermitian matrix, and A_{k} be a $k \times k$ submatrix of A obtained by taking the first k rows and the first k columns. Then $\lambda_{j}\left(\lambda_{k}\right) \leqslant \lambda_{j}(A)$ for any $j=1, \cdots, k$.
Proof. By assumption there exists a $k \times(n-k)$ matrix B and an $(n-k) \times(n-k)$ matrix C such that $A=\left[\begin{array}{ll}A_{k} & B \\ B^{*} & C\end{array}\right]$. Note that A_{k} is also Hermitian. Let v_{1}, \cdots, v_{n} be eigenvectors of A, each correspoding to eigenvalue $\lambda_{1}(A), \cdots, \lambda_{n}(A)$ respectively, and let w_{1}, \cdots, w_{k} be eigenvectors of A_{k}, each correspoding to eigenvalue $\lambda_{1}\left(A_{k}\right), \cdots, \lambda_{k}\left(A_{k}\right)$ respectively. Fix any $j \in\{1,2, \cdots, k\}$ and let V, W be subspaces of \mathbb{C}^{n} where

$$
\mathrm{V}=\operatorname{span}\left\{v_{\mathrm{j}}, \cdots, v_{\mathrm{n}}\right\}, \quad \mathrm{W}=\operatorname{span}\left\{\left[\begin{array}{c}
w_{1} \\
\mathbf{0}
\end{array}\right], \cdots,\left[\begin{array}{c}
w_{\mathrm{j}} \\
\mathbf{0}
\end{array}\right]\right\} .
$$

Then $\operatorname{dim}(\mathrm{V})+\operatorname{dim}(W)=(n-j+1)+j>n$ so $V \cap W$ must be a nontrivial subspace of \mathbb{C}^{n}. Hence there exists a unit vector $u \in \mathbb{C}^{k}$ such that $\left[\begin{array}{l}u \\ 0\end{array}\right] \in V \cap W$. Now observe that

$$
\left[\begin{array}{l}
u \\
\mathbf{0}
\end{array}\right]^{*} A\left[\begin{array}{l}
u \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{ll}
u^{*} & \mathbf{0}
\end{array}\right]\left[\begin{array}{ll}
A_{k} & B \\
B^{*} & C
\end{array}\right]\left[\begin{array}{c}
u \\
\mathbf{0}
\end{array}\right]=u^{*} A_{k} u .
$$

Here as $\left[\begin{array}{l}u \\ \mathbf{0}\end{array}\right]$ itself is a unit vector in \mathbb{C}^{n}, and as it is clear that $u \in \operatorname{span}\left\{w_{1}, \cdots, w_{j}\right\}$, by Claim 1 we get

$$
\lambda_{j}\left(A_{k}\right) \leqslant u^{*} A_{k} u=\left[\begin{array}{l}
u \\
0
\end{array}\right]^{*} A\left[\begin{array}{l}
u \\
0
\end{array}\right] \leqslant \lambda_{j}(A)
$$

which is the inequality desired.
Claim 3. Let A be any $\mathrm{n} \times \mathrm{n}$ Hermitian matrix. Then f can be represented as

$$
f(A)=\sup \left\{\operatorname{trace}\left(X^{*} A X\right): X \in \mathbb{C}^{n \times k}, X^{*} X=I_{k}\right\}
$$

where I_{k} is the $\mathrm{k} \times \mathrm{k}$ identity matrix.
Proof. For convenience let S denote the supremum on the right hand side. As A is Hermitian, there exists an $n \times n$ unitary matrix U such that $A=\operatorname{UDU}^{*}$ where $D=\operatorname{diag}\left(\lambda_{1}(A), \cdots, \lambda_{n}(A)\right)$. Let $J=\left[\begin{array}{c}I_{k} \\ 0\end{array}\right]$ be the $n \times k$ diagonal matrix with entries of the main diagonal being 1 .

Then for $\mathrm{X}=\mathrm{UJ}$ we have

$$
\begin{aligned}
\operatorname{trace}\left(X^{*} A X\right) & =\operatorname{trace}\left(J^{*} U^{*} A U J\right) \\
& =\operatorname{trace}\left(J^{*} D J\right) \\
& =\lambda_{1}(A)+\cdots+\lambda_{k}(A) \\
& =f(A)
\end{aligned}
$$

while $X^{*} X=J^{*} U^{*} U J=J^{*} J=I_{k}$. Hence $f(A) \leqslant S$.
On the other hand, let X be any $n \times k$ matrix where $X^{*} X=I_{k}$, and let x_{i} be the $i^{\text {th }}$ column vector of X. The fact that $X^{*} X=I_{k}$ implies that $\left\{\chi_{1}, \cdots, \chi_{k}\right\}$ is an orthonormal set, so by the Basis Extension Theorem and Gram-Schmidt process we can extend this set into an orthonormal basis of \mathbb{C}^{n}. That is, there exists a unitary matrix Y where if we let y_{i} to be the $\mathfrak{i}^{\text {th }}$ column vector of Y then $x_{1}=y_{1}, \cdots, x_{k}=y_{k}$. Also, as $Y^{*} Y=I_{n}$, we have $Y^{*} X=J$.

Note that $Y^{*} A Y$ is similar to A, so $\lambda_{j}\left(Y^{*} A Y\right)=\lambda_{j}(A)$. Also note that the (i, j)-entry of $Y^{*} A Y$ is $y_{i}^{*} A y_{j}$, so the $k \times k$ submatrix of $Y^{*} A Y$ obtained by taking only the first k rows and k columns becomes $X^{*} A X$. Thus by Claim 2, and also by noting that $X^{*} A X$ is a $k \times k$ matrix, we have

$$
\begin{aligned}
\operatorname{tr}\left(X^{*} A X\right) & =\lambda_{1}\left(X^{*} A X\right)+\cdots+\lambda_{k}\left(X^{*} A X\right) \\
& \leqslant \lambda_{1}\left(Y^{*} A Y\right)+\cdots+\lambda_{k}\left(Y^{*} A X\right) \\
& =\lambda_{1}(A)+\cdots+\lambda_{k}(A)
\end{aligned}
$$

Since X was chosen arbitrarily so that $X^{*} X=I_{k}$, we have $S \leqslant f(A)$. Therefore as claimed, we have $f(A)=S=\sup \left\{\operatorname{trace}\left(X^{*} A X\right): X \in \mathbb{C}^{n \times k}, X^{*} X=I_{k}\right\}$.

Finally now we can show that f is convex. Note that for any given $X \in \mathbb{C}^{n \times k}$, the function defined on the set of $n \times n$ matrices as $A \mapsto \operatorname{trace}\left(X^{*} A X\right)$ is linear. Let A and B be any $n \times n$ Hermitian matrices, and $\lambda \in[0,1]$. Then by Claim 3, we have

$$
\begin{aligned}
f(\lambda A+(1-\lambda) B)= & \sup \left\{\operatorname{trace}\left(X^{*}(\lambda A+(1-\lambda) B) X\right): X \in \mathbb{C}^{n \times k}, X^{*} X=I_{k}\right\} \\
= & \sup \left\{\lambda \operatorname{trace}\left(X^{*} A X\right)+(1-\lambda) \operatorname{trace}\left(X^{*} B X\right): X \in \mathbb{C}^{n \times k}, X^{*} X=I_{k}\right\} \\
\leqslant & \lambda \sup \left\{\operatorname{trace}\left(X^{*} A X\right): X \in \mathbb{C}^{n \times k}, X^{*} X=I_{k}\right\} \\
& +(1-\lambda) \sup \left\{\operatorname{trace}\left(X^{*} B X\right): X \in \mathbb{C}^{n \times k}, X^{*} X=I_{k}\right\} \\
= & \lambda f(A)+(1-\lambda) f(B) .
\end{aligned}
$$

Therefore by definition, f is convex.

