POW 2020-16

2016____ Chae Jiseok

September 29, 2020

We use * to denote conjugate transpose. Let two integers n and k be given so that $1 \le k \le n$. For an $n \times n$ Hermitian matrix A let f denote the function given in the problem, that is, let

$$f(A) = \lambda_1(A) + \cdots + \lambda_k(A)$$
.

We make a few claims.

Claim 1. For an $n \times n$ Hermitian matrix A, let u_1, \dots, u_n be unit norm eigenvectors correspoding to $\lambda_1(A), \dots, \lambda_n(A)$, respectively. For any $j \in \{1, \dots, n\}$, let ν and ν be any unit vectors such that $\nu \in \text{span}\{u_1, \dots, u_j\}$ and $\nu \in \text{span}\{u_1, \dots, u_n\}$. Then $\nu^*A\nu$ and $\nu^*A\nu$ are real numbers satisfying

$$v^*Av \geqslant \lambda_i(A)$$
 and $w^*Aw \leqslant \lambda_i(A)$.

Proof. Because $\{u_1, \cdots, u_n\}$ forms an orthonormal basis for \mathbb{C}^n , there exists complex numbers $\alpha_1, \cdots, \alpha_j$ and β_j, \cdots, β_n satisfying $\nu = \sum_{i=1}^j \alpha_i u_i$ and $w = \sum_{i=j}^n \beta_i u_i$. By the same reason, $u_i^* u_j = 0$ whenever $i \neq j$, and $u_i^* u_i = 1$ for all $i \in \{1, \cdots, n\}$. So we have $1 = \|\nu\|^2 = \sum_{i=1}^j |\alpha_i|^2$ and thus

$$\begin{split} \nu^* A \nu &= \nu^* \sum_{i=1}^j A \alpha_i u_i = \nu^* \sum_{i=1}^j \lambda_i(A) \alpha_i u_i \\ &= \left(\sum_{i=1}^j \overline{\alpha_i} u_i^* \right) \left(\sum_{i=1}^j \lambda_i(A) \alpha_i u_i \right) \\ &= \sum_{i=1}^j \lambda_i(A) \left| \alpha_i \right|^2 u_i^* u_i \\ &\geqslant \lambda_j(A) \sum_{i=1}^j \left| \alpha_i \right|^2 \\ &= \lambda_j(A). \end{split}$$

Similarly we have $1 = ||w||^2 = \sum_{i=1}^{n} |\beta_i|^2$ and thus

$$\begin{split} w^*Aw &= w^* \sum_{i=j}^n A\beta_i u_i = w^* \sum_{i=j}^n \lambda_i(A)\beta_i u_i \\ &= \left(\sum_{i=j}^n \overline{\beta_i} u_i^*\right) \left(\sum_{i=j}^n \lambda_i(A)\beta_i u_i\right) \\ &= \sum_{i=j}^n \lambda_i(A) |\beta_i|^2 u_i^* u_i \\ &\leqslant \lambda_j(A) \sum_{i=j}^n |\beta_i|^2 \\ &= \lambda_j(A). \end{split}$$

Therefore we have the desired inequalities.

Claim 2. Let A be an $n \times n$ Hermitian matrix, and A_k be a $k \times k$ submatrix of A obtained by taking the first k rows and the first k columns. Then $\lambda_j(A_k) \leq \lambda_j(A)$ for any $j = 1, \dots, k$.

Proof. By assumption there exists a $k \times (n-k)$ matrix B and an $(n-k) \times (n-k)$ matrix C such that $A = \begin{bmatrix} A_k & B \\ B^* & C \end{bmatrix}$. Note that A_k is also Hermitian. Let ν_1, \cdots, ν_n be eigenvectors of A, each correspoding to eigenvalue $\lambda_1(A), \cdots, \lambda_n(A)$ respectively, and let w_1, \cdots, w_k be eigenvectors of A_k , each correspoding to eigenvalue $\lambda_1(A_k), \cdots, \lambda_k(A_k)$ respectively. Fix any $j \in \{1, 2, \cdots, k\}$ and let V, W be subspaces of \mathbb{C}^n where

$$V = \operatorname{span} \{v_j, \dots, v_n\}, \quad W = \operatorname{span} \left\{ \begin{bmatrix} w_1 \\ \mathbf{0} \end{bmatrix}, \dots, \begin{bmatrix} w_j \\ \mathbf{0} \end{bmatrix} \right\}.$$

Then dim(V)+dim(W)=(n-j+1)+j>n so $V\cap W$ must be a nontrivial subspace of \mathbb{C}^n . Hence there exists a unit vector $u\in\mathbb{C}^k$ such that $\begin{bmatrix} u\\0\end{bmatrix}\in V\cap W.$ Now observe that

$$\begin{bmatrix} u \\ \mathbf{0} \end{bmatrix}^* A \begin{bmatrix} u \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} u^* & \mathbf{0} \end{bmatrix} \begin{bmatrix} A_k & B \\ B^* & C \end{bmatrix} \begin{bmatrix} u \\ \mathbf{0} \end{bmatrix} = u^* A_k u.$$

Here as $\begin{bmatrix} u \\ 0 \end{bmatrix}$ itself is a unit vector in \mathbb{C}^n , and as it is clear that $u \in \text{span}\{w_1, \cdots, w_j\}$, by **Claim 1** we get

$$\lambda_j(A_k) \leqslant u^*A_ku = \begin{bmatrix} u \\ \boldsymbol{0} \end{bmatrix}^*A \begin{bmatrix} u \\ \boldsymbol{0} \end{bmatrix} \leqslant \lambda_j(A)$$

which is the inequality desired.

Claim 3. Let A be any $n \times n$ Hermitian matrix. Then f can be represented as

$$f(A) = sup \left\{ trace(X^*AX) : X \in \mathbb{C}^{n \times k}, X^*X = I_k \right\}$$

where I_k is the $k \times k$ identity matrix.

Proof. For convenience let S denote the supremum on the right hand side. As A is Hermitian, there exists an $n \times n$ unitary matrix U such that $A = UDU^*$ where $D = diag(\lambda_1(A), \dots, \lambda_n(A))$.

Let $J = \begin{bmatrix} I_k \\ 0 \end{bmatrix}$ be the $n \times k$ diagonal matrix with entries of the main diagonal being 1.

Then for X = UJ we have

$$\begin{aligned} trace(X^*AX) &= trace(J^*U^*AUJ) \\ &= trace(J^*DJ) \\ &= \lambda_1(A) + \dots + \lambda_k(A) \\ &= f(A) \end{aligned}$$

while $X^*X = J^*U^*UJ = J^*J = I_k$. Hence $f(A) \leq S$.

On the other hand, let X be any $n \times k$ matrix where $X^*X = I_k$, and let x_i be the i^{th} column vector of X. The fact that $X^*X = I_k$ implies that $\{x_1, \cdots, x_k\}$ is an orthonormal set, so by the Basis Extension Theorem and Gram-Schmidt process we can extend this set into an orthonormal basis of \mathbb{C}^n . That is, there exists a unitary matrix Y where if we let y_i to be the i^{th} column vector of Y then $x_1 = y_1, \cdots, x_k = y_k$. Also, as $Y^*Y = I_n$, we have $Y^*X = J$.

Note that Y*AY is similar to A, so $\lambda_j(Y^*AY) = \lambda_j(A)$. Also note that the (i,j)-entry of Y*AY is $y_i^*Ay_j$, so the $k \times k$ submatrix of Y*AY obtained by taking only the first k rows and k columns becomes X*AX. Thus by **Claim 2**, and also by noting that X*AX is a $k \times k$ matrix, we have

$$\begin{split} \operatorname{tr}(X^*AX) &= \lambda_1(X^*AX) + \dots + \lambda_k(X^*AX) \\ &\leqslant \lambda_1(Y^*AY) + \dots + \lambda_k(Y^*AX) \\ &= \lambda_1(A) + \dots + \lambda_k(A). \end{split}$$

Since X was chosen arbitrarily so that $X^*X=I_k$, we have $S\leqslant f(A)$. Therefore as claimed, we have $f(A)=S=\sup\left\{ trace(X^*AX): X\in\mathbb{C}^{n\times k}, X^*X=I_k\right\}$.

Finally now we can show that f is convex. Note that for any given $X \in \mathbb{C}^{n \times k}$, the function defined on the set of $n \times n$ matrices as $A \mapsto trace(X^*AX)$ is linear. Let A and B be any $n \times n$ Hermitian matrices, and $\lambda \in [0,1]$. Then by **Claim 3**, we have

$$\begin{split} f(\lambda A + (1-\lambda)B) &= sup \left\{ trace(X^*(\lambda A + (1-\lambda)B)X) : X \in \mathbb{C}^{n \times k}, X^*X = I_k \right\} \\ &= sup \left\{ \lambda \operatorname{trace}(X^*AX) + (1-\lambda)\operatorname{trace}(X^*BX) : X \in \mathbb{C}^{n \times k}, X^*X = I_k \right\} \\ &\leqslant \lambda \sup \left\{ \operatorname{trace}(X^*AX) : X \in \mathbb{C}^{n \times k}, X^*X = I_k \right\} \\ &+ (1-\lambda)\sup \left\{ \operatorname{trace}(X^*BX) : X \in \mathbb{C}^{n \times k}, X^*X = I_k \right\} \\ &= \lambda f(A) + (1-\lambda)f(B). \end{split}$$

Therefore by definition, f is convex.