Problem of the Week 2020 #14

Problem. Let $m_0=n$. For each $i\geq 0$, choose a number x_i in $\{1,...,m_i\}$ uniformly at random and let $m_{i+1}=m_i-x_i$. This gives a random vector $\mathbf{x}=(x_0,x_1,...)$. For each $1\leq k\leq n$, let X_k be the number of occurrences of k in the vector \mathbf{x} . For each $1\leq k\leq n$, let Y_k be the number of cycles of length k in a permutation of $\{1,...,n\}$ chosen uniformly at random. Prove that X_k and Y_k have the same distribution.

Proof. For each permutation $\pi \in S_n$, order cycle depending on order of its least element. Define $c(\pi) := x = \{x_0, x_1, ..., x_{l-1}\}$ where x_k is length of k-th cycle.

For any vector $x = \{x_0, ..., x_{l-1}\}$, define $m_i(x) := \sum_{k=i}^{l-1} x_k$ and $m_l(x) = 0$, $t(x) = \{x_1, ..., x_{l-1}\}$. Clearly, $m_i(x) - m_{i+1}(x) = x_i$ and $m_{i+1}(x) = m_i(t(x))$. By definition of $c(\pi)$, $m_0(c(\pi)) = n$.

Claim. Probability of obtaining $x = c(\pi)$ is $P(x) = \prod_{i=0}^{l-1} \frac{1}{m_i(x)}$.

Enough to show there are n!P(x) permutations with $x=c(\pi)$, since the probability of choosing specific permutation π is identically 1/n!.

Apply induction on *l*. By definition, 0^{th} cycle always contains 1. Choose remaining x_0 - 1 elements in

the first cycle in order, which gives $_{n-1}P_{x_0-1} = \frac{(n-1)!}{(n-x_0)!}$ cases.

If
$$m = 1$$
, done (:: $x_0 = n$, $_{n-1}P_{n-1} = (n-1)! = \frac{n!}{n} = \frac{n!}{m_0(x)} = n! P(x)$).

If m > 1, re-number the remaining of $\{1, ..., n\}$ excluding 0th cycle, without changing order, so that it becomes $\{1, ..., n-x_0\}$. As we are working with permutation, this does not affect number of cases. By induction hypothesis, number of cases of choosing the other cycles is $(n-x_0)!P(t(x))$. Multiplying number of choices of first cycle, we obtain total of (n-1)!P(t(x)) possibilities.

Then,
$$(n-1)! P(t(x)) = n! \times \frac{P(t(x))}{m_0(x)} = n! P(x)$$
.

Now let $M(x) = \{m_0(x), m_1(x), \dots, m_l(x)\}$, which is upper bound of x_i in the process of X_k .

Claim. Probability of obtaining **x** from process of X_k is P(x).

Consider n to be $m_0(x)$. Apply induction on *l*.

For l = 1, *n* has to be chosen first from $\{1, ..., n\}$ and it's done. Probability is 1/n = P(x).

For l > 1, x_0 has to be chosen first from $\{1, ..., n\}$, which gives 1/n. After that, it has to choose t(x). Since $m_0(t(x)) = m_1(x) = m_0 - x_0$, this is identical to choosing t(x) from scratch.

By induction hypothesis, choosing t(x) has probability of P(t(x)). In total, $\frac{1}{n} \times P(t(x)) = P(x)$.

Observe that for each vector x with $m_0(x) = n$ and $c(\pi) = x$, both X_k and Y_k are occurrences of k in x, since the number of k-cycle in π can be counted as occurrence of k in $c(\pi)$.

Obviously, $c(\pi)$ for $\pi \in S_n$ spans entire $\{x : x_k > 0 \text{ for } k = 1, 2, ..., m, m_0(x) = n\}$, i.e. both have the same range of **x**. Because $X_k = Y_k$ given $c(\pi) = x$, and probability of choosing $c(\pi) = x$ for both process is the same, X_k and Y_k should have the same distribution.