POW 2020-14

2016 \qquad Chae Jiseok

September 14, 2020

As we are interested on the probability as $n \rightarrow \infty$, we may only consider the case where $n \geqslant 3$. Let Q_{n} be the probability such that for each pair of vertices v and w, there exists a common neighbor u. Such a graph is clearly connected, so we have $Q_{n} \leqslant P_{n} \leqslant 1$. Given two vertices v and w, the probability of a vertex u which is not v nor w being a common neighbor of v and w is $\frac{1}{9}$. As the edges are added independently, the probability of v and w not having a common neighbor is $\left(\frac{8}{9}\right)^{n-2}$. Using the union bound, the probability of the existence of two vertices having no common neighbors is bounded above by $\binom{n}{2}\left(\frac{8}{9}\right)^{n-2}=\frac{n^{2}-n}{2}\left(\frac{8}{9}\right)^{n-2}$. Using L'Hôpital's rule twice we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{2}-n}{2}\left(\frac{8}{9}\right)^{n-2} & =\lim _{n \rightarrow \infty} \frac{n^{2}-n}{2(9 / 8)^{n-2}} \\
& =\lim _{n \rightarrow \infty} \frac{2 n-1}{2 \ln (9 / 8)(9 / 8)^{n-2}} \\
& =\lim _{n \rightarrow \infty} \frac{2}{2(\ln (9 / 8))^{2}(9 / 8)^{n-2}}=0 .
\end{aligned}
$$

Meanwhile by the definition of Q_{n}, the probability of the existence of two vertices having no common neighbors is $1-Q_{n}$. Thus by Sandwich theorem we have $\lim _{n \rightarrow \infty}\left(1-Q_{n}\right)=0$, that is, $\mathrm{Q}_{\mathrm{n}} \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$. Again by Sandwich theorem, we conclude that $\lim _{n \rightarrow \infty}^{n \rightarrow \infty} \mathrm{P}_{n}=1$.

