POW 2020-11

2016____ Chae Jiseok

June 20, 2020

Let $S = \{a, b\}$ and F = F(S) be a free group on the set S so that it is of rank 2. Let H be a subgroup of F where $H = \langle \{a^k b^k : k \in \mathbb{Z}\} \rangle$. Let $T = \{a^k b^k : k \in \mathbb{Z}\} \cup \{(a^k b^k)^{-1} : k \in \mathbb{Z}\}$ then every element in H can be written in a finite product of elements in T.

We show that H is not finitely generated despite being a subgroup of F. For the sake of contradiction, suppose that $H = \langle s_1, s_2, \cdots, s_m \rangle$ for some positive integer m and $s_1, \cdots, s_m \in H$. Then because s_1, \cdots, s_m can each be written as a finite product of elements in T, there exists a finite subset T_0 of T such that s_1, \cdots, s_m are all generated by elements in T_0 , which implies $H = \langle T_0 \rangle$. Thus for some positive integer ℓ such that $T_0 \subset \left\{ a^k b^k : |k| \leqslant \ell \right\} \cup \left\{ (a^k b^k)^{-1} : |k| \leqslant \ell \right\}$ we shall have

$$\begin{split} \mathsf{H} &= \langle \mathsf{T}_0 \rangle \\ &\leqslant \left\langle \left\{ a^k b^k : |k| \leqslant \ell \right\} \cup \left\{ (a^k b^k)^{-1} : |k| \leqslant \ell \right\} \right\rangle \\ &= \left\langle \left\{ a^k b^k : |k| \leqslant \ell \right\} \right\rangle \\ &\leqslant \left\langle \left\{ a^k b^k : k \in \mathbb{Z} \right\} \right\rangle = \mathsf{H} \end{split}$$

hence $H = \langle \{a^k b^k : |k| \leq \ell\} \rangle$. This asserts that every element in H should be possible to be represented as a product of elements in $T_\ell = \{a^k b^k : |k| \leq \ell\} \cup \{b^{-k} a^{-k} = (a^k b^k)^{-1} : |-k| = |k| \leq \ell\}$. Now write $h \in H$ as in the reduced form $h = a^{\alpha_1} b^{\beta_1} a^{\alpha_2} b^{\beta_2} \cdots a^{\alpha_k} b^{\beta_k} \in H$ where $h = e_H$ which is the case where k = 0 and for convenience we set $\alpha_1 = 0$ in this case, or we allow only α_1 or β_k to be 0. Observe that h cannot be in the form of a^{α_1} or b^{β_1} for nonzero α_1 or β_1 since a product of elements in T_ℓ must have the property that the sum of exponents of a and the sum of exponents of b must be equal. By multiplying an element of T_ℓ to h it falls into one of the three following cases : α_1 remains unchanged, or everything is cancelled out so that $h = e_H$ and α_1 becomes 0, or $h = e_H$ so that α_1 is changed to some number with absolute number less than ℓ . That is, $|\alpha_1| \leq \ell$ for any $h \in H$. However if so then we must have $a^{\ell+1}b^{\ell+1} \notin H$, which is absurd. We conclude that our assumption that H is finitely generated must be false, that is, H is indeed not finitely generated.