POW 2020-11

2016 \qquad Chae Jiseok

June 20, 2020

Let $S=\{a, b\}$ and $F=F(S)$ be a free group on the set S so that it is of rank 2. Let H be a subgroup of F where $H=\left\langle\left\{a^{k} b^{k}: k \in \mathbb{Z}\right\}\right\rangle$. Let $T=\left\{a^{k} b^{k}: k \in \mathbb{Z}\right\} \cup\left\{\left(a^{k} b^{k}\right)^{-1}: k \in \mathbb{Z}\right\}$ then every element in H can be written in a finite product of elements in T .

We show that H is not finitely generated despite being a subgroup of F. For the sake of contradiction, suppose that $H=\left\langle s_{1}, s_{2}, \cdots, s_{m}\right\rangle$ for some positive integer m and $s_{1}, \cdots, s_{m} \in H$. Then because s_{1}, \cdots, s_{m} can each be written as a finite product of elements in T, there exists a finite subset T_{0} of T such that s_{1}, \cdots, s_{m} are all generated by elements in T_{0}, which implies $H=\left\langle T_{0}\right\rangle$. Thus for some positive integer ℓ such that $T_{0} \subset\left\{a^{k} b^{k}:|k| \leqslant \ell\right\} \cup\left\{\left(a^{k} b^{k}\right)^{-1}:|k| \leqslant \ell\right\}$ we shall have

$$
\begin{aligned}
H & =\left\langle T_{0}\right\rangle \\
& \leqslant\left\langle\left\{a^{k} b^{k}:|k| \leqslant \ell\right\} \cup\left\{\left(a^{k} b^{k}\right)^{-1}:|k| \leqslant \ell\right\}\right\rangle \\
& =\left\langle\left\{a^{k} b^{k}:|k| \leqslant \ell\right\}\right\rangle \\
& \leqslant\left\langle\left\{a^{k} b^{k}: k \in \mathbb{Z}\right\}\right\rangle=H
\end{aligned}
$$

hence $H=\left\langle\left\{a^{k} b^{k}:|k| \leqslant \ell\right\}\right\rangle$. This asserts that every element in H should be possible to be represented as a product of elements in $T_{\ell}=\left\{a^{k} b^{k}:|k| \leqslant \ell\right\} \cup\left\{b^{-k} a^{-k}=\left(a^{k} b^{k}\right)^{-1}:|-k|=|k| \leqslant \ell\right\}$. Now write $h \in H$ as in the reduced form $h=a^{\alpha_{1}} b^{\beta_{1}} a^{\alpha_{2}} b^{\beta_{2}} \cdots a^{\alpha_{k}} b^{\beta_{k}} \in H$ where $h=e_{H}$ which is the case where $\mathrm{k}=0$ and for convenience we set $\alpha_{1}=0$ in this case, or we allow only α_{1} or β_{k} to be 0 . Observe that h cannot be in the form of $a^{\alpha_{1}}$ or $b^{\beta_{1}}$ for nonzero α_{1} or β_{1} since a product of elements in T_{ℓ} must have the property that the sum of exponents of a and the sum of exponents of b must be equal. By multiplying an element of T_{ℓ} to h it falls into one of the three following cases : α_{1} remains unchanged, or everything is cancelled out so that $h=e_{H}$ and α_{1} becomes 0 , or $h=e_{H}$ so that α_{1} is changed to some number with absolute number less than ℓ. That is, $\left|\alpha_{1}\right| \leqslant \ell$ for any $h \in H$. However if so then we must have $a^{\ell+1} b^{\ell+1} \notin H$, which is absurd. We conclude that our assumption that H is finitely generated must be false, that is, H is indeed not finitely generated.

