Let's define a $n \times n$ matrix $A_n = (a_{ij})$ by $a_{ij} = x^{|i-j|}$ where x is a variable. If we let $p_n(x)$ denote the determinant of A_n then

$$p_n(x) = \sum_{\pi} sgn(\pi) \prod_{i=1}^n a_{i\pi(i)} = \sum_{\pi} sgn(\pi) \prod_{i=1}^n x^{|i-\pi(i)|} = \sum_{\pi} sgn(\pi) x^{d(\pi)}$$

where $d(\pi)$ is the displacement of π . So the number of even permutations with displacement d minus the number of odd permutations with displacement d is the coefficient of x^d in $p_n(x)$.

For n > 1,

so that $p_n(x) = (1-x^2)p_{n-1}(x)$. (The equality is attained by subtracting the (n-1)th row times x from the nth row.) $p_1(x) = 1$ so we can inductively show that $p_n(x) = (1-x^2)^{n-1}$ and the coefficient of x^{2k} in $p_n(x)$ is $(-1)^k \binom{n-1}{k}$.